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We study theoretically the equation of state of a fluid suspension of charged otgegtscolloids, poly-
electrolytes, clay platelets, etcdialyzed against an electrolyte solution using the cell model and linear
Poisson-BoltzmaniPB) theory. From the volume derivative of the grand potential functional of linear theory
we obtain two expressions for the osmotic pressure in terms of the potential or ion profiles, neither of which
coincides with the expression known from nonlinear PB theory, namely, the density of microions at the cell
boundary. We show that the range of validity of linearization depends strongly on the linearization point and
prove that expansion about the self-consistently determined average potential is optimal in several respects. For
instance, screening inside the suspension is automatically described by the actual ionic strength, resulting in the
correct asymptotics at high colloid concentration. Together with the analytical solution of the linear PB
equation for cell models of arbitrary dimension and electrolyte composition, explicit and very general formulas
for the osmotic pressure ensue. A comparison with nonlinear PB theory is provided. Our analysis also shows
that whether or not linear theory predicts a phase separation depends crucially on the precise definition of the
pressure, showing that depending on the choice, an artificial phase separation in systems as important as DNA
in physiological salt solution may result.
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I. INTRODUCTION always been an important substitute. However, the freedom

In this paper we study the osmotic pressure of a susperteo choose an expansion point and its subsequent impact on
sion of charged colloids or polyelectrolytes in osmotic equi-the range of validity and accuracy of the linearization have
librium with an electrolyte of given composition. Examples often gone unnoticed. Moreover, the computatioheirmo-
of such systems abound in our everyday life. They occur agynamicproperties from the ioniprofilescomputed in linear
dispersion paints, viscosity modifiers, flocculants, or supertheory is often based on expressions from the nonlinear PB
absorbers, to name but a few techn'ological applipationspneow or expansions therepf4—17. This procedure is by
[1,2]. They also play a tremendous role in molecular biology,ng means unique and invariably entails internal inconsisten-
since virtually all proteins in every living cell, as well as the ¢jes Both these points make it virtually impossible to con-
DNA molecule itself, are charged macromolecules dissolveq 4o whether any failures of the linearized PB theory are
in salty water{3]. A great deal of experimental and theoret- 05| geficiencies or avoidable side effects of a nonoptimal or
ical research has been devoted to their understanding, and nsistent linearization.
several good textbooKd,2,4~7 and review article$8—11] In this paper we resolve these issues by giving a coherent
are available. _ presentation of the linearized PB theory, which illuminates

Arguably the most fundamental thing to know about thesgpe g htie interrelations between the Donnan equilibrium,
suspensions is their equation of state, i.e., howm(@senotio  micrgion screening, linearization, and the osmotic pressure.
pressure depends on other thermodynamic variables liKg, saec. |11 we utilize the functional approach to the PB
macromoleculgr cha_\rge or concentration. Within_the last 1OQheory[18—2q and generalize its quadratic expansfad],
years several ingenious ways have been conceived for treafgjying at a functional that yields the PB equation linearized

ing this problem on varying levels of sophistication. In this . . — . .
paper WZ will be concerned with the FI)Doisson—BoItzmannabOUt the electrostatic potential value This expansion

(PB) theory in combination with a cell-model approximation point will turn out to lie at the _hea_rt of all those interr_ela-
for the macroion correlations, which we briefly revisit in Sec. tions. For generaly we then derive in Sec. IV an analytical
IIl. While this does not present the highest level of accuracyormula for the pressure in terms of the ionic profiles. Our
or sophisticatior{12], it is probably the simplest and up to €Xpression replaces the famous boundary density [22¢
today the single most important starting point; it offers affom the nonlinear PB theory, according to which the os-
benchmark against which all other theories are comparednotic pressure of the suspension is given by the value of the
Indeed, we believe that modern improvements can only b&mlcroion density at the outer cell boundary. That this does
fully appreciated once one understands the successes aﬂgt.hold inlinearizedtheory may be considered as one of the
failures of the most fundamental mean-field theories. major results of the present work. S .
Since the nonlinear PB equation can be solved analyti- The most common choice of the linearization point

cally only in very few case§13], its linearized version has ¢—namely, the potential value in the salt reservoir—suffers

1063-651X/2002/6@)/01140115)/$20.00 66 011401-1 ©2002 The American Physical Society



MARKUS DESERNO AND HANS-HENNIG von GRMBERG PHYSICAL REVIEW E66, 011401 (2002

from several drawbacks, as this value can be very differen¥™ | al
from the average electrostatic potentjgi(r)) in the colloi- . 5
dal suspension, and it seems more reasonable to sell |© o« .Ol .« ® e e
consistently linearize about the lat{eh5,23—-25. We inves- o.O 0 =0 Oo | o o * 5 °
tigate this choice in Sec. V and will prove that it is indeed e W o« .
optimal—in the sense thdt) charge screening rests on the O.O SIIELENE o 2 g O °
actual ionic strength, such th&i) the crossover between @ o o o
counterion and salt screening is naturally included &gl ce Oa OO o o e O @
the limit of large volume fraction is correctly reproduced. In OO 00 95 o ©

i - ilibri e © I o ° o) *
brief, all zeroth-order effects of the Donnan equilibrium are . ° o ° o

. . . . . kO O O ® | ® [.) J

already incorporated by the mere choice of the linearization

E?f:enc':[isan\(/jVéhsvilllln Z?srgii:iﬁg?\%n;}?Vgtﬁ:rsc&%?sergg:fe[h%rder FIG. 1. A solution of charged objects is in osmof@onnarn

: o . . . equilibrium with a salt reservoir of given composition. The mem-
linearization pqlnt 0verest!mate the_ Donna_n effeC_t in thebrane is permeable for small ions only and has to support an excess
lowest order, since they violate a rigorous _Inequallty fr(_)mosmotic pressureAP. The mesoscopic objects are depicted as
the PB theory for the salt content in the colloidal suspension

. - . - “"'spherical(as appropriate, for instance, for “conventional” charged
Based on this optimal linearization scheme we then deriveyioigs or micelles, but our discussion will be more general and

explicit analytical formulas for the osmotic pressure of sus-j also apply to cylindrical entitiege.g., DNA, actin filaments,

pensions of charged m?SOSCOP_iC ijeCtS in Sec. VI. Thespwv viruses or planar objectge.g., charged membranes, clay par-
formulas hold for spherical, cylindrical, and planar shapesicles).

and should thus be useful in a broad variety of possible sys-

predictions with the full nonlinear PB theory. average densities generates an osmotic pressure difference

Within the full PB theory the pressure is always positive. hat the membrane has to sustain and which we wish to cal-
Whether or not this also holds in the linearized theory de<ulate in the following.

pends both on the choice of the linearization panas well ar Fgrsi'&plt'ﬁg itheiﬁ?cuZ]tfetrt]ir:erseer:]\ggstour?c?hzﬁmgtlderz]at;tyer
as on the precise definition of the pressure itself. We prov% g 9 9

that the pressure is always positive for symmetric electro- €ing br_oug_ht in contact with the_maqr_mon soIL_mon. Th's
— assumption is not necessary, but simplifies our discussion of

lytes if one treats) as an independent variable. If one doesyenera) theoretical issues. How it can be avoided is demon-

not, the pressure can become negative at low volume fraGated in Ref[34]. We also note that we will not describe

tions [25—-31. The implied liquid-gas coexistence—not be- 1o solvent explicitly but rather replace it by a continuum
ing present on the nonlinear level—is thus clearly an artifact, i, relative dielectric constant
.

As a striking example we show that even a solution of DNA
molecules under physiological cond|t|o_n_s would be predicted B. Cell model and Poisson-Boltzmann theory
to phase separate at all relevant densities.

Theoretical concepts such as the cell model or PB theory
have long become standard tools, so we will restrict our-
selves to a brief description and only provide the basic
In this section we start by introducing the physical equations—essentially in order to introduce our notation and

situation we wish to describe—namely, the Donnanterminology. A recent and more detailed exposition can be

equilibrium—and its theoretical description in terms of a cellfound in Ref.[35]. o
model. The PB theory is founded on its grand potential func- The cell-model approximation attempts to reduce the

tional, and a brief derivation for the pressiteading to the ~complicated many particle problem of interacting charged
boundary density ruleis presented. colloids and microions to an effective one-colloid problem. It

rests on the observation that at not too low volume fractions
the colloids—due to mutual repulsion—arrange their posi-
tions such that each colloid has a region around it that is void
We study a suspension of charged mesoscopic objectsom other colloids and looks rather similar for different col-
(henceforth simply referred to as “colloids” dialyzed loids. In other words, the Wigner-Seitz cells around two col-
against a salt reservoir of given composition, as illustrated ifoids are comparable in shape and volume. One now assumes
Fig. 1. This situation is traditionally referred to as a “Donnanthat (i) the total charge within each cell is exactly zefib)
membrane equilibrium32-34. Much of our discussion all cells have the same shape, diiid for actual calculations
will be independent of the shape of the colloids, and our finabne may approximate this shape such that it matches the
explicit formulas will be valid for spherical, cylindrical, and symmetry of the colloidfor instance, spherical cells around
planar geometries. Even though the microions can traversgpherical colloids If the radius of the colloids isg, the cell
the membrane, their average concentration differs betweeradiusR is chosen such that=(r,/R)¢ equals the volume
the salt reservoir and the colloid compartment, since the latfraction occupied by the colloids. Here,measures the “di-
ter is already occupied by the counterions originating frommensionality” of the colloid in the sense thdt=1, 2, and 3
the macroions, which cannot leave the compartment due toorresponds to planar, cylindrical, and spherical colloids. If

Il. GENERAL FRAMEWORK

A. The Donnan equilibrium
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one(iv) neglects interactions between different cells, the par- ) 5
tition function finally factorizes in the macroion coordinates, K ==47T€|32i vinp- (4)
i.e., the thermodynamic potential of the whole suspension is

equal to the number of cells times the thermodynamic poteng \ve reinsert the solution of this equation back into the

tial of one cell. functional (1) and use Eq(2), we obtain its equilibrium

Within each cell the small ions assume some inhOMOGer — minimum) value, which is the grand potential of the non-
neous distribution that arises from their interactions W'thlinear PB theory:

themselves as well as with the charged colloid. Computing

the corresponding partition function is impracticable, since 1

all ions are correlated with each other. The Poisson-,BQeq:EJ ddr pf(r)zp(r)—J ddrz n;(r)
Boltzmann theory is the mean-field route to circumventing v v !
precisely this problem. A very powerful way to formulate it )

starts from a thermodynamic potential functional belonging \we want to close with the following remarks: The above
to the appropriate ensemble—which in our case is the grandyiational principle can be constructed starting from the PB

1
1+ EUilﬂ'(r) .

canonical one: equation(see, for instance, Reff20] and references thergin
1 but this need not give a unique functioj@b] and (once()

,BQZJ' ddf[—¢(f)( pr(r)+ 2 Uini(r)> has been identified with the grand potentiappears like an
v 2 i upside-down explanation for the key initial equati@®).

However, the PB theory can be well justified by deriving the
+ 2 ni(r){ln[ni(r)Aid]_ 1) functional (1) from the underlyingHamiltonian For in-
i stance, it can be obtained as the saddle point of the field
theoretic actiorf37—40, as a density functional reformula-
_52 Mini(f)}- (1) tion of the partition function combined with a first-order cu-
[ mulant expansion of the correlation tefi#l], or from the
Gibbs-Bogoljubov inequality applied to a trial product state
The meaning of the symbols is as follow8=1/kgT is the [35]. Those approaches also show that the PB theory pro-
inverse thermal energy/(r) is the local electrostatic poten- vides an upper bound of the exact thermodynamic potential.
tial (made dimensionless by multiplication wite, wheree
is the positive unit chargethe potential is generated by both C. The pressure in Poisson-Boltzmann theory
the fixed charge densitgp¢(r) (located, for instance, on the
colloid surface as well as the distributions;(r) of mobile
ions of specieg, which have a signed valeneg, a chemical
potential x;, and a thermal de Broglie wavelengl; the
region of integratiorV is understood to be the space within
one cell that is actually accessible to the small ions. Th
functional minimization of Eq(1) subject to the constraints
of Poisson’s equation and charge neutrality yields the set og
Euler-Lagrange equations

One advantage of the thermodynamic functional approach
to the PB theory is that it becomes immediately clear what
the pressure is—in the present ensemble, the derivative of
the grand potential5) with respect to the volume. It proves
convenient to rewrite this in terms of the functiondl),
hich can be achieved as follows. The variation upon some
hange in volume can be decomposed into the “orthogonal”
hanges

o)
d
oVt fvd "2

90
ni(r)=A; %efrie v =, e vitl), 2) 59:W oni(r), (6
v

n;(r)

Then; , are the concentrations of ions of spedi@s the salt  \yhere the first term contains any explicit dependence on the
reservoir, where the electrostatic potential has been assum%lume(at fixed ion profiles and the second part is the im-
to vanish. Combining Eq2) with Poisson’s equation results plicit dependence through the ion profile fixed volume.
in the nonlinear Poisson-Boltzmann differential equation foryqyever, since the equilibrium distributions make the grand
the potentialy(r) in the region within the cell accessible to yotential functional stationary with respect to variations of
the microions. After introducing the Bjerrum lengfs  the density profile at fixed cell geometry, the implicit terms
=pe’/e,, itis written as vanish. Hence, the pressure is just the negative derivative of
the grand potentiafunctional with respect to the cell vol-
ume, evaluated at the equilibrium profileThe derivative

n. e viv . -
Ei viN; e dldV is understood to imply a movement of the outer neutral
Aw(r)=—4w€BE vini(n=—xK——m8—, cell boundary, which shall be located e+ R, and which
: > vin p only occurs in the boundaries of the volume integral in Eq.
i :

(). Note that rewriting the electrostatic energy in terms of
3 the densities gives a double integral, and the product rule
then cancels the prefactor 1/2 in front of the term describing
with the Debye screening constartof the salt reservoir the electrostatic energy. Putting everything together, one ar-
defined by rives at
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B a,BQeq_ aBQ If we expand the entropic terms in Ed.) about the points_li
pP=- EVERY] @) up to quadratic order, we obtain
eq
a1
== 2 ni(RI[o(R)+In{ni(RIA} 1~ Buileg 0= | gl 3000 o0+ 3 vin 0
I
—0ii(R Ish 1+2(1+ -_)M— nn 2

:Ei Ni b8 vi(R) (8) 7 < M v _. F. .

(13)
:Z ni(R). ©  We will refer to this expression as the grand potential func-

tional of the linearized PB theory, since its functional mini-
This is the well known resulfi22] that within PB theory the mization (again, under the constraint of Poisson’s equation
pressure is given by the sum of the ionic densities at the cefind charge neutralipjleads to
boundary. It actually holds beyond the mean-field approxi-

mation[41], but this will not be our concern in the following. ni(N=n; e " [1—v{g(r) = y}]. (14
Its generalization for more complicated cells can, for in-__ . . ) . )
stance, be found in Ref§11,24). This is the Boltzmann relatio(2) linearized about the po-

Equations(8) and (9) give the pressure acting within the tential valuey. We want to stress right from the beginning
macroion compartment. Thexcessosmotic pressure across that we leave the value af unspecified for the time being.
the membrane is the difference between this pressure and thénearized PB theory is not unique, it is a one-parameter
pressure in the salt reservoir. The latter is obtained with comfamily labeled by the expansion point. The by far most com-

parative ease, since the electrolyte is homogeneous angon choice found in the literature i=0 (strictly speaking,
hence the route via a density functional is unnecessary. Ofhe potential in the salt reserviirbut this is not the only
the same level of approximation as above it is given by thgonceivablglet alone optimal possibility. In Sec. V we will

van't Hoff equation come back to this issue in greater detail.
Combination of Eq.(14) with Poisson’s equation yields
BpreszE Nip. (10) the linearized Poisson-Boltzmann equation
= T,
This implies for the excess osmotic pressure across the mem- 2| vin; EI Uizni -
brane Ay(r)=—«? [(r) =]

Z Uizni,b Z Uizni,b

BAP= n; y(e "i"P—1)=0. (12)
I J—
= k’[Y(r) = ], (15)
The last inequality follows frone*=1+x and the fact that

the salt reservoir is neutral, i.€,v;n; ,=0. Hence, within  with the renormalized screening constgwand the inhomo-
PB theory the excess osmotic pressure is always norgeneous terny; of the differential equation defined as

negative.
Z vin;
2 |

K —2477632 vln (16
When studying the linearized PB theory we want to ben- E UiZni b !
efit from the same thermodynamic coherence as in the non- i '
linear case. We can achieve this aim by likewise founding the
key equations on a suitable grand potential functional—a"d
possibility that has previously been pointed out bywen .
et al. [21]. > uin;
First observe that a functional leading to a linearized ver- A ! (17)
sion of the PB equation necessarily is quadratic in the den- ' E UZF.
- [ |
|

Ill. THE GRAND POTENTIAL IN LINEARIZED THEORY —

sities. The only part in Eq.1) for which this is not already

true are the entropy terr’ms(r)[ln(ni(r)./\id) —1]. Let us now

introduce a set of densitigs by “Boltzmann weighting”the ~ Note, in particular, that appears as a screening constant
reser\gir densities; , with an as yet unspecified potential 5icylated with the Boltzmann-weighted densitﬁs it is
value i hence different from the screening constant in the salt reser-

o _ voir. For the special case ofiav electrolyte, this simplifies
n;:= ni]be_”i‘/’. (12) to

011401-4



OSMOTIC PRESSURE OF CHARGED COLLOIDA .. PHYSICAL REVIEW E 66, 011401 (2002

1 _ I ed V. T, ... )
w—;tanr(w)} 18) plp=—| el P

Awmf?w)—?

with

v

i.e., the partial derivative of the potenti@0) with respect to
2= 42 COSKU%ZKZ. (19) the volume, I_<eeping all other variablgs fixed. This amounts
to the following procedure: If one wishes to calculate the
If we reinsert the solution of Eq15) into the functiona(13) ~ pressure at a given volume, one first chooses the desired
and use Eq(14), we obtain the equilibrium grand potential linearization pointy(V) at this volume, bufixesit subse-

of linearized PB theory: quently. Then one measures the change in the grand potential
1 1 upon slightly changing the volume.
ﬁQ”“'eqzij ddr pf(r)w(r)—VZ n 1+§Uiﬂ However, one could also argue th&dj, eV, ...)
v ! =Qineq(Vs - - - (V) is the desired grand potential. In this

vV _ _ _ casey is not regarded as an independent variable, but is
+t5 > oini(L+ o)) — ). (200 removed from the description by substitution. The pressure
' from the derivative of this potential is then

The angular bracketg---) denote the spatial average

(IN) [, d% - - - over the part of the cell volume accessible to -
the ions. P, _ ( Qi eV, T, .. .))
T

lin *— oV
IV. THE PRESSURE IN LINEARIZED THEORY

As mentioned in the Introduction, the computation of the _
pressure in linearized PB theory has often been based on [ dQjn eV, T, ... ,#(V))
formulas originating from the nonlinear case or expansions T dv
thereof[14—-17). For instance, one could use the predictions T
for boundary potential or density from linearized theory and

insert them into formulag8) or (9), respectively. However, — —
although both formulas coincide on the nonlinear level, they —p®_ Ijined V. T, - ) dy (V) 22)
yield different results once the linearized equation is used to fin ay vr dv -’

compute(R) or n;(R), since Eq.(2) no longer holds.

Here we circumvent this source of inconsistency by
avoiding any recourse to results from nonlinear PB theory,l-hiS is the total derivative of the grand potential
Analogously to Sec. Il C we base the pressure on the volum Y e ith | d it diff
derivative of the grand potential of linearized PB theory, Eq.: ¥in.eq{ AN (V) with respect to volume, and it differs
(20). This leads to a formula that gives the pressure as 4°M Pin’ by an additional term that stems from the volume
function of the ionic profiles and which replaces the bound-dependence ofy. The incorporation of the constraigt(V)

ary density rulg(9). amounts to the restriction of possiblv,@) values to a one-
dimensional submanifold. One hence compares values of the
A. Relevant thermodynamic variables grand potential at neighboring points on that submanifold,

Before we differentiate the grand potential we would like along which one differentiates.

to pause for a moment and discuss the issue of relevant ther- Figure 2 gives a sche_rr_latic Hllustration of the _di_fference

modynamic variables, since the pressure formula will turﬁt_r)etv\./een these two deﬂmtmns. Observe that deﬂm(@_)lj

out to depend on our,choice for them implies tha_lt the g(and potential can no longer be obtained by
. a volume integration of the pressure.

The grand potential of nonlinear PB theory depends on fter th iderati d with
volumeV, temperaturd, colloid chargeQe, volume fraction . After t €se consi erann; We can how procee with our
' ! ' aim to derive a formula that gives the pressure in terms of the

&b, gnd the set of chemical p_otentlakﬁ. I_n add_|t|0n to these solution of the linear equation.
variables the grand potential underlying theear theory

also depends on the linearization po%tThis proves a rel-
evant issue since itself may depend on volume, see the B. The derivative of the functional
following Sec. V. For reasons that will become clear later, it The same line of reasoning that led to H@) can be

turns out to be extremely useful to considees an indepen- employed to rewrite the derivative of the equilibrium grand
dent variable rather than insert the functional dependencgotential as a derivative of the grand potential functional. If

Z(V) into the potential and thereby eliminafe one again remembers thatsV just corresponds to a move-
With this in mind, the thermodynamic definition of the ment of the outer neutral cell boundary, the pressure defini-
pressure within the linearized PB theory becomes tion (21) and Eq.(14) give
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Combining this with Eq(22) results in an explicit formula
Q) =8w) for P
1 dy _ .
BPIY=BPIR 5V Gu{LW(D—yI) 2 vini. (26)

QV,y)

Note that unlikeP(}), this expression depends on the whole
potential distribution, and not just on the boundary potential
or the boundary densities.

Equations(23), (24), and (26) are the first key result of
this paper. They replace the boundary density (@)efrom
nonlinear PB theory, whose validity in the linear case has
often falsely been taken for granted. However, we should
remark thatP{}) and P{?) differ from the boundary density
rule by terms that are essentially quadratic in the potential. If
these are no longer reasonably small compared to the first-

] o order terms, the validity of linearization may well be ques-
FIG. 2. Relation between the two pressure definitions from Eqstignaple.

(21) and(22) discussed in the text. In the first scheme the derivative In the second part of this paper we will use the general
is taken in the direction of increasingalong a coordinate fine of 1, .e55re equations derived above to obtain explicit analytical
constanty; in the second scheme the derivative is taken tamge”t'ai)ormulas, once we have established an optimal linearization
to the submanifold) (V. #(V)), which emerges from restricting the it %, \which will be the topic of the following section.
values {,#) to these given by the defining equatigiV) of the
linearization point.

V. OPTIMAL CHOICE OF ¢

BPR=2 {—vini(Rw«RH%+<1+vi%ni<R>

Up to now we have not specified the linearization paint
rather, we have emphasized that its choice is largely at one’s
disposition. However, not all choices may be equally suc-
cessful. In fact, the range of validity of linearization depends

strongly on the choice af, since it is thedifferencebetween
€da the potential and its linearization point that is required to be
_ 1 _ small and not the potential itself. This is particularly impor-
=> ni,be”ﬂ 1-vi[#H(R) =]+ §Ui2[ P(R)— y]? tant in concentrated suspensions where this difference can be
! small even when the total potential is quite large.

(23 In this section we identify an optimal linearization
scheme—uwhich, however, first requires a clarification of
what “optimal” is supposed to mean. It proves instructive to

(24 first study the obviougbut futile) attempt to base optimality

on a minimization of the grand potential, as we discuss in

; ; : ; .. Sec. VA. This sheds some surprising light onto traditional

Equation(23) replaces Eq(8_)and Is easily recognized as its linearization. In Sec. VB we will then discuss a scheme

quadratic expansion abouty. Similarly, Eq. (24) replaces 5564 on the self-consistently determined average potential
Eq. (9). Sincex+1/x=2, the expressioli24) is larger than  anq present its optimal aspects in Sec. V C, which even

2ini(R), i.e., the expression that would follow if the bound- though this approach has been used in the [E523—25
ary density rule(9) were also correct in the linear case. Al- 56 largely gone unnoticed.

ternatively, the latter follows by noting that the boundary
density rule is equivalent to tHaear expansion of Eq(8),
and the additional quadratic terms in E@3) are positive
and render the pressure larger. One may try to obtain an optimal expansion point by
In the case of pressure definitié®2) we need the explicit |ooking for the value of that minimizes the grand potential
volume dependence 61, eq, Which can again be rewritten of |inear theory. Let us thus set the derivative®f, eq, EQ.

as the derivative of functionddy,, Eq.(13). From Eq.(12) 5 ity respect toy to zero. Using Eq(25) and remem-
Ig:L?S\lvsy'rggnegd'g;iﬁ%?‘;gdwag)U‘ni’ and one readily ob- bering that((y(r)— )?) is nonzero unless the profile is
' completely flat, we see that the valueyphit the extremum is

1R

2

n(R)
n R

1
=52 ni(R)

A. Minimizing the grand potential

Qneq in 1 _ — given by the solution ofEiv?ni,be*”i‘/’zo. The left-hand
—= == | =;Vl¥(n- Y192 vini. (25  side is a sum of strictly monotonically decreasing functions.
It 4 eq ' If ions of both sign are present, the left-hand side hence falls
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monotonically from+e to —o and the equation has a Satisfying this equation is necessary and sufficient for the

unique solution. 'Unf.ortunate_ly, hpwever, this mon_otomr; validity of Eq. (28), so we can determing, also from Eq.
creaseof the derivative also implies that this solution corre- (29). If the electrolyte contains ions of both signs, the right-
sponds to anaximunof the grand potential. For a symmetric hand side monotonically decreases frome to — as a

viv electrolyte, the solution is, for instance, given #y-0.  function of iy, SO a solution always exists and is unique.
The most widely used choice of the expansion point, henceror the special case ofw@v electrolyte with reservoir den-

gives thelargestgrand potential of all possible linearization sty n, this equation becomes very easy. First define the vari-
schemedthis can, for instance, be verified in Fig. 1 of Ref. gpje

[25], which shows the thermodynamic potential for various
linearization schemes o
We hasten to remark that the above finding has to be put Nne
in the correct perspective. Minimization is only a meaningful 0::2_nb' (30)
venture if one can be sure about the existence of a lower
bound[42]. For instance, the PB functional is bounded be-
low by the exact thermodynamic potential of the restrictedwhich is just the ratio between the mean density of counte-
primitive model. Minimizing the functional stems from the rions in solutionn.:=|Q|/vV, and the density of salt ions in
desire to get as close to this result as is possible within @he reservoir, 8,. Using this, Eq(29) reduces to
mean-field descriptiof35]. For the parametef from linear-
ized PB theory, such a lower bound for the functional cannot _
be constructed, hence minimization is meaningless. And sinr'(u$ t)l;”Q/vV:tgS 10) 31)
even if there were a bound, there would be no reason to op 2ny, g '
approach it—unless one knows that it is favorably related to
the actual thermodynamic potential. _
which is easily solved fog,. It also shows thatthe modu-
B. Expansion about the average potential lus of) ¢y is large if we are in the counterion dominated
regime @ large and small if we are in the salt dominated

Havin n th minimization condition & i .
aving seen that a ation condition @by, ¢ is regime @ smal).

not successful, we will approach the problem from a differ-
ent direction. If we average E@14) over the cell volume

and use Eq(12), we find C. Optimality of ¢

(ni(NYy=n;—vin(g(r)— ). (27) The linearization scheme from the above Sec. V B has
been put forward several times in the p$,23—-29, but its
various special properties have gone unnoticed. In this sec-

If we were to choos¢y(r) — ) =0, the second term would ., \e show in what sense this scheme can be regarded as
vanish and the expansion points for the densities would  gptimal.

coincide with the averagd®;(r)). It clearly makes sense to Since the choice OEopt implies that the expansion points
expand about these average values, since then the differences . . L . .
between the actual value and expansion point can be kepi cOincide with the average microion densitigs(r)), this

small throughout the celli.e., in the whole region in which translates to the corresponding screening consiajpt,
linearization must work. Hence, the choice which—as Eq.(16) shows—is now also calculated with the
average ionic strength within the cell:

= opi=((1)) (28)
’ K= amle v3(n(1)). (32

is a particularly suitable one, which, in anticipation of the I

results from Sec. V C, we have labeled with the index “opt.”

At first sight this particular choice may seem difficult to Due to the Donnan effect the latter is different from that in
work with, since the average/(r)) determines the value of the reservoir, and it is more appropriate to have a lineariza-
Zopt’ but the potential/(r) to be averaged is in turn the tion scheme that derives its screening constant from the ac-
solution of the equation linearized aboﬁ; . However, the tua] lon densities n the macroion .compart'ment. In fact,.de-

ot X scribing the colloidal system in an integral-equation

necessary self-consistency is readily fqu|I!ed, Sie(r)) approach together with the mean spherical approximation
(and thus)o) depends only on the state point and not on thegjoqyre yields an effective pair potential between colloids

actual ionic profile: For reasons of electroneutrality the totakp,5+ is a screened Coulomb potential with the screening con-
charge of all ions in the cell must be the negative of the

Y . stant being equal tEopt—see, for instance, Refl11].
colloid charge, and so we have, using BGX) and (28), Let us make the above remarks more explicit by special-

Q izing to a symmetriw:v salt of reservoir concentratiam, .
Vi E vi(ni(n)= E vin; e vivom, (29) :insthls case the optimal screening constant can be expressed
| I
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Kop=° COSHv Yop)  [EQ.(19)] (Netngng=(n..()(n-(r)=ni(e *")(e"")
=k?\J1+ 6% [Eq.(31)] =nje vWDer (D) =nZ, (34)
=8mlgv2npV1+(nd2n,)2 [Egs.(4) and(30)] where Jensen’s inequalifg4] has been used. Equati¢®4)

states that the mean ionic molarf5] within the suspension
=477€Bv2\/nc§+(2nb)2. (33 s greater than in the reservoir. On the other hand, within the

linearizedPoisson-Boltzmann theory we find

This expression differs from the screening constant of the  (n+n)ng=ng[1—v{(r)— P 1+o{p(r)— §)]

salt reservoir by also incorporating the contribution due to _ o1 2 2,2

the counterions. It is illuminating to study its limiting behav- [ 1= r) = ) ]<ny. (39

iors at high and low salt concentration. In the salt dominated =0

regime, i.e.,f<1 orn.<2ny, the screening constant,, is

practically identical to the reservoir screening const&nt  Thjs is the inequality(34) but with a reversed inequality
Tr.ns., is the fimit in which the Donnan .effec.t IS slrongly di- sign Observe that linearizing abo%pt is the only scheme
minished, and Eq(31) also shows that in this casgp—0.  that does not violate Eq34), since Eq(28) renders Eq(35)

In the opposite limit of counterion dominatiod>1 orn.  an equality. The importance of these two inequalities can be
>2n,, the screening constaﬁ,pt is essentially determined further unveiled by solving them for the average salt concen-
by the average counterion concentration, and it will be subtration ng inside the suspension, which gives the sequence
stantially larger than the screening constant of the reservoir. L N

In this limit the Donnan effect is strong angh, is signifi- Nl pe= Nyl P8,y = NdLPE (36)
cantly different from zero. The traditional linearization

schemey)=0 will fail to adequately describe this case, evenWith

though the ionic profiles can be very flat and thus amenable o .

to linearization. In summary, we see that linearizing the PB 2n4 LPB,Yiop \/nC§+(2nb)2—nC. (37

equation abou@zo invariably ignores the counterion con-
tribution to the screening, whereas the expansion about thi@ other words, linearized PB theory gives a lower bound to

self-consistently determined average potential includes thghe average salt density within the cell, aagpt gives the
counterions in a way that yields the correct behavior in thelargest lower boundSince underestimatinﬁs means over-

limits of high and low salt. L — .
The fact that a strong Donnan effect goes along with Sestimating the Donnan effect, thg,, scheme gives as close

— . . . a representation of the Donnan equilibrium as is possible in a
value of ¢, substantially different from the reservoir poten-

tial is also to be expected on more fundamental grounds: Thg‘ear theory. Observe also that the predicti@) for ns

difference in microion concentrations across the membran gnlr%qr?n?r?e“g%iréz;aarflg?f;tlr;?tzer:dnfahelzevgte':: kf;fé‘t'vr?tfogggf'f?‘
characteristic of the Donnan equilibrium implies a concomi- scribing glecting activity -

tant jump of the electrostatic potential, referred to as theme.nts(see_,.for Instance, Reff33,46). In that sense the set
“Donnan potential.” Within the cell model this is just the of inequalities(36) lies at the heart of the Donnan equilib-
potential at the cell boundaryi(R). Its magnitude can like- fium and distinguisheg,; as optimal.
wise be used to measure the strength of the Donnan effect. It is possible, although not straightforward, to extend the
But a large Donnan potential also results in a large averag@Pove considerations to general electrolyte compositions. In
potential. This close connection between the Donnan equfhat case one has to look at more refined combinations of
librium and the optimal linearization scheme led the authorglensities, also taking into account to what percentage a par-
of Ref. [25] to suggest the name “Donnan |inearizatic[|4'3] ticular Species Is represented in the ionic mixture. One Pos-
for the scheme from Eq(28). sibility is the following: Define the average

The above findings can be succinctly reformulated in the
following way: By choosing the optimal linearization point (n;(r)) . Ni b
— oY i i with  p;:= , (38
¥opt the Donnan equilibrium is automatically described cor- Nib n
rectly to lowest order. The solution of the linearized PB Ib
equation then provides the higher-order corrections. We now

show thateveryother linearization point gives a description which is inspired by a similar procedure employed when

that violgtes an important zerqth-order.in.equality valid ongefining mean activity coefficientst5]. Within PB theory
the nonlinear PB level. Let us first specialize to:@ elec- e can readily derive

trolyte. If we denote by_1C the average density of counterions

and by?S the average density of salt molecules within the AF;BE P, |n<e—vi¢/(r)>>_<¢(r)>2 pv;i=0, (39
cell, we have within the Poisson-Boltzmann theory, T SR

A:=2 piIn

]
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where Jensen’s inequality has again been used. The last step

follows from the charge neutrality of the salt reservoir. How- Jopt 2 vin;

ever, within linearized PB theory we get I(”11) - 2 n,— _(1_ )2—_ (43)
vin

LPB — _
A=2) piIn(e [ 1—v{y(r)— y}])
! The case of the alternative pressure definifigs. (22)
_ and (26)] requires the evaluation of some integrals over
=Z pi IN[1—vi(g(r) = )] modified Bessel functions entering the express{py(r)
- zposz). After some algebra we obtain for the case of op-
timal linearization the final formula

—<¢//(r)—$>§i: piv;i=0. (40)
3
Yopt 1 E vih;
Here, the elementary inequality In{X)<x has been used. It Bp(2) - Bpl(lﬁ)_ - E U.BF. :
is straightforward to see that the relatiof®) and (40) re- 29 2 v2n
ith

duce to the inequalitie634) and (35) for av:v electrolyte. 7
Nonlinear and linearized PB theory again lead to conflicting

inequalities in all but one case: if,y is chosen as the lin- {1 ¢

2

E
—(d— 2)x0D +x0

earization point, the PB inequality is not infringed. 2d¢
(44)
VI. EXPLICIT EXPRESSIONS AND APPROXIMATIONS _
FOR d-DIMENSIONAL CELL MODELS where E=K g/o_ 1(Xo) 1 g2(X) + Kgio(X) 1 gjo—1(X0), Xo= KT g,

qndX «R.
The explicit pressure formulagl), (43), and(44) are a
ther key result of this paper, and in the remainder we will
rs_,tudy some of their consequences. Unfortunately, due to the
algebraic complexity their properties cannot be readily seen.
%n the following subsection we will, therefore, spend some
ime to study their analytical behavior in a few important
limiting cases. Finally we will provide graphical illustrations
for the pressure formulas for several typical cases in Sec.
VII.

In Sec. IV we gave expressions of the pressure in terms
the charge or potential profiles that were based on the derlvz?
tive of the grand potential. In this section we will substanti- ur
ate these results by inserting the actual solution of the linea
ized PB equation for a-dimensional cell model47]. We
will place particular emphasis on the formulas that emerg

from using the optimal linearization pouqiopt that we have
discussed in the preceding section.

A. Analytical formulas for the pressure

In the Appendix we outline how the linearized PB equa- B. Pressure bounds, limiting behavior, and expansions

tion can be solved for a generdidimensional cell model The pressure formulé23) is quadratic ing(R), and it is
(whered=1, 2, and 3 corresponds to planar, cylindrical, easily checked that it takes its minimum value at the inho-
and spherical macroions, respectiyellf we insert the final mogeneity; defined in Eq.(17). From Eq.(A5) and the
expressionA5) into the pressure equatid23), we get the definition of y in Eq. (42) we see that this formally corre-

explicit formula sponds toy=0, and indeed the pressure expressil) at-
) tains its minimum value there. For a symmetrio electro-
(Z v-ﬁ) lyte this implies for theexcessmotic pressure,
_ 1 Qv .
,Bpl(i%): El: ni— 2 1- 7’2 — — BA PI(i#,)min _B( I:)I(ii,)min_ Pres
> oin > oin; on, 2n,
I |
(41)

_ 1 _ _
= coshv ¢) — Esinr(v ) tanhv ) —1
where the variabley is defined as

[cosk(vt,// 1]2
~ 1-¢ 2cosmv¢)

(45

Hence, in the symmetric case the pressure from the linear-
ized PB theory defined via E¢R1) is non-negative for every
andD is given in Eq.(A4). In the case of Donnan lineariza- chosen linearization poink. However, this does not hold for
tion —Q/V=ZX,v;n; according to Eq(29), such that Eq41) general electrolytes. It may be verified that for the asymmet-
further reduces to ric case of a 1:2 electrolyte, the excess pressure is negative
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if J has the same sign as the divalent ion speciesl%d limit, since the lack of mutual repulsions renders some basic
€[0;0.6309. In Donnan linearization this comes down to assumptions about the cells questionable. Furthermore, one
the requirement tha@ has the same sign as the divalentMust keep in mind that our formulas only give the osmotic
species and €|Q|<1.596,V, wheren, is the reservoir Pressure of the suspension due totfieroions Even though
density of the monovalent species. Essentially, the pressuFBiS contribution most often dominates just because there are
can become negative when the counterion content within thEYany more microions than macroions, the contribution of the
cell is overwhelmed by the salt ions. latter has to become dominant once the microion term van-
Let us now restrict again to a symmetiico electrolyte  iShes exponentially. _ _ _
and recall the variabl@ from Eq. (30), which assesses the  The limit of large volume fraction$— 1, requires a little
relative importance of counterions and salt ions to theMore care. UsingR=rq¢ ", an expansion ob around¢
screening. The definitiot80) shows thaty is small if either =1 gives to lowest order
V is large(i.e., the volume fraction of colloids is lovor n,
is large (i.e., much salt has been added to the sygtdm
both cases«,,R becomes large and we may exploit the
asymptotic behavior of the modified Bessel functi to
ap);;rozimate the quantitp from Eq. (A4) accordingﬁf] 1,1 1(X0)[K,(X0) +K 1 2(X0) T}~ Y= 1),

¢H1X0
D = E{le(xo)[' I/(XO)+ I V+2(XO)]

with v=d/i2—1 and Xo=kopff o= KT o(1+ 62 Y4 Since ¢

D=Kal ko o)l a2l x0pR) «1/(1— ¢), both 6 andx, diverge asp— 1. x,/2 times the

Ko Kopffo) — expression in curly brackets approaches cIx§ with ¢
~ T aropR =(d?—1)(d®+3)/64 [48]. The termy, therefore, behaves
27 KopR asymptotically like
o g1 e e
~ —_— Y = d 1_ / 2 —1/d_1 \/—— 2"
2K0pt\ Rro ( C XO)((rZS ) ¢ XO

This shows that + y? is of order 1. Using this, it is now
straightforward to show that to lowest order the high volume
fraction limit of Eq. (43) is given by

Hence, y=1/D vanishes exponentially. The pressupgt)
will thus approach its minimum value computed above.

Since in this limit ,,—0, we may expand Eq45) for
small ¢ and obtain b1

BP{Y = ne. (48)
IBAPI(i%,)min o<1 (UZopt)4 ¢
2n, 8 8’

(46)  This equation is simple to interpret: It states that the pressure
is given by the average counterion density. This is reason-
able, because in this limit the ionic profiles become (faitd

X . . L Shus the electrolyte idepand all the salt is expelled from the

(measured in units of the reservoir concentrgticamishes as cell. Indeed, Eq(48) merely states that the osmotic coeffi-

the fourth power off. We note in passing that the lowest- cient goes té) 1. We hasten to add that E8) only demon-
order calculalion based merely on the average counteriogtrates the proper behavior within the cell model. Real sus-

concentratiom, from Eq. (37) (or, alternatively, the bound- pensions crystallize at large enough volume fraction, a
ary density from the salt-free PB thedry7]) gives instead transition that can only be described correctly once one ac-

the asymptotic behavio#?/2, i.e., only a quadratic depen- counts for the ordered phase as well—see, for instance, Refs.
dence. [26,28,50-53 But in order to get the phase boundary right,

The full expressiort43) contains a term that appears to be one of course also needs a good estimate of the grand poten-
of secondorder in 6§, namely,6?y*/2. Sincey vanishes ex- tial in the fluid phase, so the correct scaling of the optimal
ponentially, one could be led to the incorrect conclusioy  Jinearization at high volume fraction is after all practically

“‘prematurely” terminating the expansion at this paithat  jmportant.

the pressure in linearized PB theory also vanishes exponen- Wwithin Donnan linearization positivity of the pressure

tially [15]. While it is in fact true that in the fulhonlinear  does not generally hold for the second pressure definition

theory the pressure vanishes exponentially in the limit of sal{22), not even for symmetric electrolytes. First, observe that
domination(a simple plausibility argument for this can be jn the limit 6—0 the ratio E/D in Eq. (44) approaches
found in Ref.[35]), this does not hold for the linearized K, ,(x,)/Kgs(Xo). Hence, ford=3 the term in the square
theory[49], where the exponential decay of the te@fy”/2  prackets from Eq(44) approaches3/(1+xo)2, implying an

is masked by the quartic asymptotic from E¢46). In any  asymptotic excess pressure of
case, one has to be a little bit careful about the physical

meaning of this limit. It indeed correctly describesiagle BA pl(iﬁ) X>1d=3 (5 Q| gv?
~ 3 _

charged colloid immersed in an electrolyte. However, a di-
lute suspensiof many colloids is not well described in this

2n, 8 4(1+Kr0)2>' “9
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In the limit /— 0 the expression in the parentheses becomes *
negative, and so doeSP{?). The same holds fod=1, in
which case we find

I~
S

I/ -1 05

-
=3

8AP/2m,
OBAP/0R,
R

: (50

BA pl(iﬁ) X>1d=1 3( 5

2n, 8" 4xhge

0.3 04 10-* 10-% 102 10—t 1

where A gc=1/2m{gv|o| is the Gouy-Chapman length of
the charged planar surface with charge density For d
=2 an analytic treatment is complicated by the fact gt FIG. 3. Pressurgleft) and inverse reduced compressibility
and K, cannot be expressed as simple functions. Howevelright) as a function of volume fractiog for a solution ofspherical

for generald we can proceed if we assume that akge>1,  colloids having a bare charg@=3500 and a radius,=133 nm.
which, for instance, holds at sufficiently high salt content. InThe system is in contact with a dilute 1:1 electrolyte of concentra-

this case, an asymptotic expansid@8] gives tion 3.6 uM and the Bjerrum length i§g=0.714 nm, correspond-
ing to water at room temperature. The solid curve is the result from

K (Xo) 1-d d?-1 nonlinear PB theory, the bold dashed curve is the first pressure
Sdrmr 0l 4+ 4+0(xg%. (51  definition(23) combined with the optimal linearization from Sec. V,
Karz(Xo) 2Xo 2 0 leading to the explicit expressidd3), while the dotted curve com-
bines this scheme with the second pressure defini{2éh leading
Inserting this in Eq(44) yields to the explicit formula(44). The fine dashed curve uségs=0, in
which case both pressure definitions coincide and the explicit for-
mula (53) applies.

Xp>1

AP X0 4(5 *o(1=9)| 52

2n;, 8

8  4d¢
restricting to lowest order. However, in this approach it is

showing again that P{2) becomes negative in this limit. To difficult to see that this is in fact thermodynamically consis-

avoid confusion we want to explicitly stress that this behav-€nt.

ior of AP{2) clearly contradicts the results from nonlinear PB

theory and hence should be considered as an artifact of this

particular linearization scheme and pressure definition. VII. COMPARISON WITH NONLINEAR PB THEORY

Let us close with a few remarks on the pressure in the : . . .

. i o — . . o In this section we provide a comparison of the above pres-
traditional linearization schemg= 0. Since the linearization ¢ ,re formulas with the results from nonlinear PB thel@y]
point is volume independent, the two pressure definitiongyhich is intended to clarify and illustrate the findings
(21) and(22) coincide. If one calculates the excess 0smoticom the previous sections. Apart from the pressure, we
pressure by inserting=0 into Eq.(23), one finds that the will also calculate thecompressibility which is defined as
zeroth order is canceled by the reservoir pressure, while the=(1V)(dV/dAP). For a graphical representation
first order drops out due to reservoir electroneutrality, givingit is however more convenient to plot the reduced inverse

— ) compressibility 9BAP/on,=1In kg T, wﬂere the average
AP, w; 1 R)ZS v2n, = (QV) 2 (53 density of counterions is again defined y=|Q|/vV.
B lin ’//( ) 2, UiNjp v ( ) . .
2 i 22 2 In order to underline the generality of the formulas de-
— Ui Mib rived above, we will use the following three different situa-
tions: (i) spherical colloids in a 1:1 electrolytéi) cylindri-
cal colloids in a 1:1 electrolyte, andi) spherical colloids in
a 1:2 electrolyte.
The first system we study consists of spherical colloids of
chargeQ=3500 and radiug =133 nm immersed in an

In the special case of@wv electrolyte this simplifies further
to BAP;,/2n,= 6#%¥?/2 (recognize the “second-order” term
from above. Equation(53) shows that this pressure is al-

ways positive. Moreover, in the limit of low or large salt it - - :
aqueous solution(i.e., £g=0.714 nm) that is dialyzed

vanishes exponentially ag?~ exp(—2«xR)—just as in the , ;

full PB theory. Even thougE also approaches zero in this a}galnst all electrplyte of rather lO.W molarlty 346M. MOT

limit, the corr.esponding preosptsure asymptotics is dominatetVatecj by the prediction of a gas-liquid phase separation at

by t’he way in which it does so, yielding a power law as ese para_mete{§8], the aut_hors_of Rel25] used the_m as

discussed above. In the opposit,e limit of largewe have an.|lllustrat|or1 that pushe_s Imequzc_ed thepry to the limits of
: ) validity, making the way in which it deviates from the PB

segn above thf"‘t’_’;’ h_ence for theu.?; case the pressu_re theory particularly visible. Lowering the colloidal charge en-

using ¢=0 linearization asymptotically behaves like tajls a successively better agreement between the linear and

,BAP”n~E§/4nb, i.e., it diverges quadratically inc and not  the nonlinear theory, as can also be seen in 2.

linearly as it should. We finally note that a quadratic expres- Figure 3 shows the pressufleft) and the inverse reduced

sion such as E(q53) has recently been rederived in REg§4] compressibility (right) as functions of volume fractiomp.

by using a perturbative expansion of the PB equation and’he solid line corresponds to the solution of the nonlinear
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PB equation. The pressure is given by E).and the excess 20
pressure is always positiysee Eq(11)]. The same holds for
the compressibilityf56]. The dashed and dotted curves cor-

respond to the solutions from linearized PB theory. kKor
=0, both pressure definition®1) and(22) coincide, but in
this case the predictions are clearly off from the PB result
except at very low volume fraction. In contrast, using the o

optimal linearization point/,, from Sec. V B brings about ~ -03
the correct behavior at high volume fraction, i.e., in the re- ¢ ¢
gime where the cell model is particularly appropriate and
linearization should indeed work because of relatively flat
ionic profiles.

The pressure definitio22)—the total derivative of the

15

FIG. 4. Same plots as in Fig. 3, but foylindrical macroions
having a charge parametér=4.2 (i.e., 4.2 charges along the axis
per Bjerrum lengthand a radiug,=1.2 nm(those values corre-

. . spond roughly to DNA The system is in contact with a dilute 1:1
grand potential Q(V,T, ... .op(V)) with respect t0  gectrolyte of physiological salt concentration 100 mM. The line
volume—corresponds to that employed in R&5). It can styles are the same as in Fig. 3.

be seen to lead to negative pressures and compressibilities at

moderately low volume fractions, which would imply a seg-it is obvious that the PB theory only yields positive pres-
regation into a dense and a dilute colloidal phase. Such aures, but when relaxing the constraints of a cell model or
phase transition has also been claimed in other recent thetiean-field PB theory the nature of effective interactions is
retical works[26,28,29,3], which likewise are essentially much less obvious. See, for instance, Ré&d] for a recent
based on the linearized PB theory. However, the similarity ofcritical evaluation of the theoretically as well as experimen-
the resulting phase diagrams, the appearance of essentiatBlly subtle issue of phase separation in suspensions of
the same “volume terms” in the grand potenti@thich here  spherical colloids.

are responsible for the effectand the fact that the full PB In our next example we turn to a physical system that
theory does not show any phase transition, lead the authoiffers in the geometry of the colloids and that(guite lit-

of Ref.[25] to question these claims of a gas-liquid coexist-erally) of vital importance. Figure 4 shows pressure and
ence in such systems as a spurious side effect of lineariz&ompressibility of an aqueous solution of cylindrical col-
tion. In a similar spirit, Diehket al.[30] show(within a gen-  loids, i.e., charged rods, which have a radius rf
eralized Debye-Hekel-Bjerrum approach[57,58) that =1.2 nm and a line charge density of one charge per 1.7 A
explicitly reincorporating the effects of counterion condensa<{or 4.2 charges per Bjerrum lengthialyzed against a 1:1
tion, which are neglected when doing the linearization, re-lectrolyte of concentration 100 mM. The colloid is much
moves(or at least strongly suppressdabe phase transition stronger charged than in the spherical situation above, in the
that is otherwise clearly visible. We remark that Fig. 1 of sense that the surface charge density is a factor of 50 larger.
Ref.[30], showing the excess osmotic pressure as a functio®n the other hand, the salt concentration is also much larger
of volume fraction for a salt-free suspension of spherical(with the reservoir screening length being only 0.6% of the
colloids with varying bare charge, can be reproduced almostcreening length in the above low-salt casehich keeps the
quantitatively within the cell model by using Donnan linear- potentials low. The above choice of values corresponds to
ization and employing the pressure definiti@2). While  DNA in a physiological salt environment. As Fig. 4 shows,
these warnings about the dangers of linearization are cenonlinear PB theory again gives positive pressure and com-
tainly well made, we want to point out that things are in factpressibility for all volume fractionsp, and the largep be-
even a little more subtle: Not even linearized theory needs thavior is captured correctly if Donnan linearization is em-
show the phase transition. Whether or not it does so depenggoyed, while the choicey=0 fails there. However, using

crucially on the_pressure definition as well as the Iinegriza-gOpt and the definitior(22) results in a pressure that is nega-
tion point. For =0 there is no phase transition. Fgr  tive for ¢<17% and a negative compressibility fap
= opt there is a phase transition only if pressure definition<=11%. If this were true, all DNA in animal cells would tend
(22) i1s used. The definitiof21)—which is based on thpar-  to aggregate and phase separate. But again, this failure is not
tial derivative of the grand potential with respect to an inevitable artifact of linearization, since the pressﬂaﬁé
volume—yields a positive compressibility. is perfectly positive and gives rise to positive compressibili-
Let us emphasize that this pressure definitiah) could ties. Incidentally, DNAcan be condensed, but this requires
only be written down once the linearization point has beemmultivalent ions[60] and is known to be a correlation effect
recognized as an independent variable. And since it is thevhich is missing in the PB theory, see, for instarféd,—63.
volume dependence (Eopt that rendersP{2) negative, it The Poisson-Boltzmann theory and the linearization
must also be related to the “volume” terms discussed inscheme employing/=0 predict an exponentially vanishing
Refs.[25,26,28,29,3]L(see also Ref[59]). Our formulation  pressure ag— 0. However, as we have remarked above, the
of the problem hence illustrates that the way in which thesgressure due to thmacroionshas to become significant at
terms drive a phase transition is closely related to the choicsome pointsee Ref[64] for measurements on DNA in low-
of which variables one intends to keep constant when differsalt solutions, which appear to support this viefor linear
entiating the thermodynamic potential. Within tbell model  polyelectrolytes this is even more relevant than for spherical
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by starting from the appropriate thermodynamic potential
functional of linear theory, which, however, still leaves two
alternative definitions for the pressure that differ in their
treatment of a possible volume dependence of the lineariza-
tion point. Neither definition predicts the pressure to be pro-
portional to the density of microions at the outer cell bound-
YA ary, i.e., the well known result from nonlinear PB theory
e ot Mo e o1 does not apply on the linearized level. All this can be dis-
¢ ¢ cussed without fixing the expansion point, but optimality
FIG. 5. Same plots as in Fig. 3, but for a 1:2 electrolyte. Theconsiderations nevertheless suggest a specific choice for it.

colloid charge has the same sign as the divalent ions, the reservolﬁ’Xp“C.It formulas can be obtallned, since the linearized PB
density of the monovalent ions is 3,6M. The inset in the left equation can be solved analytically for general cell models.

panel magnifies the regiofi®;0.00§ X[ —0.003;0.003, while the Let us th_us summarize the key findings of this work. .
inset on the right magnifid20~4;10~2] x [ — 0.01;0.003, showing (a) The linearized PB theory can be based on a density
that in this example the first pressure definitie?l) also gives ~functional that is the quadratic expansion of the well known
negative pressures and compressibilities, while the PB result dod§inctional of nonlinear PB theory. The choice of the expan-
not. The line styles are the same as in Fig. 3. sion point distinguishes different linearization schemes. The
equilibrium value of this functional is the thermodynamic

colloids, since the conformational degrees of freedom and@otential, in our case the grand potential. o _
the degree of entanglement becomes imporfast (b) The pressure is given by the volume denvatlye_ of this
In our final example we study an asymmetric electrolyte.thérmodynamic potential. One has to make a decision as to
We go back to the system of spherical colloids studied abové/hether or not one would like to keep the linearization point
and replace the ions of one sign by divalent ones, i.e., wéixed, resulting in two different pressure definitions, which
assume a 1:2 electrolyte of concentration 3:81, which, in  feature both advantages and drawbacks.
particular, implies that the divalent species occurs with a_ (€) Thermodynamic consistency requires the boundary
concentration of 1.8xM in the reservoir. According to the density rule(9) from nonlinear PB theory to be replaced by
discussion in Sec. VI B the case in which the colloid has th¢n€ quadratic expansion of the nonlinear formula in the
same sign of charge as the divalent ions is particularly interPoundary potential. On the other hand, if the deviation from
esting, since then the positivity of the pressure cannot b€ boundary density rule becomes large, this may provide a
guaranteed even for the pressure definit@d). For this case SI9n that linearization begins to fail.
Fig. 5 shows again pressure and compressibility as a function (d) The range of validity of linearization depends on the
of volume fraction. The PB theory is once more found to€XPansion point. We proved that linearization about the self-

give positive results, and the same remarks as above abot@nsistently determined average.potential is optimal—in the
the poor highe behavior of the linearization poir‘u?=0 sense that it automatically describes the Donnan effect cor-

7 rectly in lowest order, leaving the linearized PB equation to
compared tay= i, apply also here. . incorporate higher-order corrections. Furthermore, we
However, there is afexpectedl difference concerning the - showed that all other linearization schemes violate an impor-
behavior ofP{?), which becomesvery slightly) negative for  tant inequality from nonlinear PB theory related directly to
¢$=0.68% and gives rise to negative compressibility #or the Donnan effect.
=<0.51%, as is illustrated in the insets. In Sec. VI B we have (e) The linearized PB equation can be solved exacﬂy for
seen that the pressurean become negative if[Q|  symmetric cell models of arbitrary dimension, salt reservoir
<1.5961,V, which in this case impliegp=0.96%—and in-  composition, and linearization point. We used this solution to
deed, loweringe by further 30% brings about the negative derive explicit formulas for the pressure and have discussed
pressure. We mention in passing that with a colloid havingheir analytical properties in detail.
the opposite sign of charge as the divalent species, this does (f) A comparison with the results from nonlinear PB
not occur. theory has been performed, showing that the validity of lin-
earization depends strongly on the linearization point. While
VIIl. CONCLUSION AND SUMMARY thel traditio.nal Iineariz_at.ion scheme completel_y fails to dg—
scribe the important limit of large volume fraction, the opti-
The main motivation of the present paper has been thenal (Donnany linearization becomes asymptotically correct
following question: How can the membrane pressure due to there.
Donnan equilibrium best be described within linearized PB  (g) For pressure definitiof22), i.e., thetotal volume de-
theory? This first required a clarification 6§ how one com- rivative of the grand potential, negative pressures and com-
putes the pressure aitid) what one means by “best.” Often pressibilities can occur. These findings have previously been
the pressure has been compufedthout much justification  taken as indications of a gas-liquid phase separation in sus-
by using the predictions of the linearized PB equation inpensions of spherical colloids. In the present work we
formulas of the nonlinear theoryor expansions therepf showed that the same theoretical reasoning would predict
moreover, this recourse to the full theory is not uniqgue andONA to phase separate under physiological conditions at all
hence prone to inconsistencies. These problems are avoideelevant concentrations. We consider this as a further striking
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argumentagainstthe genuineness of the transition. the modified Bessel function&, andl, [48]. The general
(h) In nonlinear PB theory the pressure is always positivesolution of the differential equatiofA1) can, therefore, be

Whether or not this still holds on the linearized level dependsvritten as

crucially on the precise definition of the pressure itself. De-

fining _the pressure via thpartial d_erivative_of j[he gr_and ¢(X):¢i+CKKV(X) +C,IV(X), (A2)

potential with respect to the voluniee., keeping in particu- XV v

lar the linearization point fixedpreserves the PB resuR )

>0 in the linear approackat least for symmetric electro- WhereCy andC, are constants to be determined by the fol-

lytes), but then the grand potential can no longer be obtainedPWing boundary conditions. Gauss’s law relates the radial

by a volume integration of this pressure. derivative of the electrostatic potential Bj=Xg /x to the
surface charge densigo of the macroion. If we define the
ACKNOWLEDGMENTS latter to be the total charge of the macroion divided by its

. ) surface area, we havg (xg) = —4w€gol/ k. Since the whole
T M.D. ch)julg “\I/(\/e to thz?tnka. T?malsf;!ro, :j Borukhov, E.  cel| is neutral, we also hawg' (X) =0 at the outer cell radius
oo o e o o s g, R= . The nfgration consiants now fllw rom inser:
! . "ing these boundary conditions into the general solution. After
He also gratefully acknowledges financial support by thea little algebra we then find the potential
German Science Foundati¢éfFG) under Grant No. De775/

1-1. H.H.v.G. gratefully acknowledges intensive discussions Arlgo X\ ”
with R. Klein and R. van Roij. PY(X)= i+ = (Y [T, 1(X)K(X)+ K, 1(X)1,(x)],
K
APPENDIX: SOLUTION OF THE LINEAR PB EQUATION (A3)
FOR A CELL MODEL IN d DIMENSIONS where the determinard is defined as
Consider a cell model id dimensions with a generalized D=K,;1(Xo) 5 1(X) =K, 1(X)1 4 1(Xo)- (A4)

radial coordinater. d=1, 2, and 3 corresponds to planar, ]

cylindrical, and spherical macroions, respectively. After theWe haveD>0 sinceX>x,. _
transformationx= »r and z/x(r)=7,b(?r)=fb(x) the linear- _ At _the outer boun.dary the potentiéh3) can be further
ized PB equatior{15) reads simplified. The term in angular brackets reduces %, Hnd

using the volume fractiorp, the surface charge density can

- d-1.. _ be rewritten in terms of the colloid chargefsroz(Q/V)
P+ S =9~ ¢, (A) % (1— ¢)/d¢. Inserting the definitiori16) for « we arrive at
where the prime indicates differentiation with respecixto W(R)= i+ QV 1-¢ (A5)
Henceforth we will not bother with the difference betweagn ' S oo dDV¢
and s and omit the tilde. An obvious particular solution of i vim

Eqg. (Al) is ¢(x)=¢;, while the homogeneous equation is

solved by the ansat#(x)=w(x)/x” with v=d/2—1, pro- Equation(A5) gives the boundary potential in the linearized
vided w(x) solves the Bessel equatiorfw”(x)+xw’(X) PB theory for a general-dimensional cell model with arbi-
— (x2+ v?)w(x) =0. Two linearly independent solutions are trary linearization poiniy and electrolyte composition.
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