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Osmotic pressure of charged colloidal suspensions: A unified approach to linearized
Poisson-Boltzmann theory
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We study theoretically the equation of state of a fluid suspension of charged objects~e.g., colloids, poly-
electrolytes, clay platelets, etc.! dialyzed against an electrolyte solution using the cell model and linear
Poisson-Boltzmann~PB! theory. From the volume derivative of the grand potential functional of linear theory
we obtain two expressions for the osmotic pressure in terms of the potential or ion profiles, neither of which
coincides with the expression known from nonlinear PB theory, namely, the density of microions at the cell
boundary. We show that the range of validity of linearization depends strongly on the linearization point and
prove that expansion about the self-consistently determined average potential is optimal in several respects. For
instance, screening inside the suspension is automatically described by the actual ionic strength, resulting in the
correct asymptotics at high colloid concentration. Together with the analytical solution of the linear PB
equation for cell models of arbitrary dimension and electrolyte composition, explicit and very general formulas
for the osmotic pressure ensue. A comparison with nonlinear PB theory is provided. Our analysis also shows
that whether or not linear theory predicts a phase separation depends crucially on the precise definition of the
pressure, showing that depending on the choice, an artificial phase separation in systems as important as DNA
in physiological salt solution may result.

DOI: 10.1103/PhysRevE.66.011401 PACS number~s!: 82.70.Dd, 64.10.1h
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I. INTRODUCTION

In this paper we study the osmotic pressure of a susp
sion of charged colloids or polyelectrolytes in osmotic eq
librium with an electrolyte of given composition. Example
of such systems abound in our everyday life. They occu
dispersion paints, viscosity modifiers, flocculants, or sup
absorbers, to name but a few technological applicati
@1,2#. They also play a tremendous role in molecular biolo
since virtually all proteins in every living cell, as well as th
DNA molecule itself, are charged macromolecules dissol
in salty water@3#. A great deal of experimental and theore
ical research has been devoted to their understanding,
several good textbooks@1,2,4–7# and review articles@8–11#
are available.

Arguably the most fundamental thing to know about the
suspensions is their equation of state, i.e., how the~osmotic!
pressure depends on other thermodynamic variables
macromolecular charge or concentration. Within the last 1
years several ingenious ways have been conceived for t
ing this problem on varying levels of sophistication. In th
paper we will be concerned with the Poisson-Boltzma
~PB! theory in combination with a cell-model approximatio
for the macroion correlations, which we briefly revisit in Se
II. While this does not present the highest level of accura
or sophistication@12#, it is probably the simplest and up t
today the single most important starting point; it offers
benchmark against which all other theories are compa
Indeed, we believe that modern improvements can only
fully appreciated once one understands the successes
failures of the most fundamental mean-field theories.

Since the nonlinear PB equation can be solved ana
cally only in very few cases@13#, its linearized version has
1063-651X/2002/66~1!/011401~15!/$20.00 66 0114
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always been an important substitute. However, the freed
to choose an expansion point and its subsequent impac
the range of validity and accuracy of the linearization ha
often gone unnoticed. Moreover, the computation ofthermo-
dynamicproperties from the ionicprofilescomputed in linear
theory is often based on expressions from the nonlinear
theory or expansions thereof@14–17#. This procedure is by
no means unique and invariably entails internal inconsist
cies. Both these points make it virtually impossible to co
clude whether any failures of the linearized PB theory
real deficiencies or avoidable side effects of a nonoptima
inconsistent linearization.

In this paper we resolve these issues by giving a cohe
presentation of the linearized PB theory, which illuminat
the subtle interrelations between the Donnan equilibriu
microion screening, linearization, and the osmotic press
In Sec. III we utilize the functional approach to the P
theory @18–20# and generalize its quadratic expansion@21#,
arriving at a functional that yields the PB equation lineariz
about the electrostatic potential valuec̄. This expansion
point will turn out to lie at the heart of all those interrela
tions. For generalc̄ we then derive in Sec. IV an analytica
formula for the pressure in terms of the ionic profiles. O
expression replaces the famous boundary density rule@22#
from the nonlinear PB theory, according to which the o
motic pressure of the suspension is given by the value of
microion density at the outer cell boundary. That this do
not hold inlinearizedtheory may be considered as one of t
major results of the present work.

The most common choice of the linearization po
c̄—namely, the potential value in the salt reservoir—suffe
©2002 The American Physical Society01-1
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from several drawbacks, as this value can be very differ
from the average electrostatic potential^c(r)& in the colloi-
dal suspension, and it seems more reasonable to
consistently linearize about the latter@15,23–25#. We inves-
tigate this choice in Sec. V and will prove that it is inde
optimal—in the sense that~i! charge screening rests on th
actual ionic strength, such that~ii ! the crossover betwee
counterion and salt screening is naturally included and~iii !
the limit of large volume fraction is correctly reproduced.
brief, all zeroth-order effects of the Donnan equilibrium a
already incorporated by the mere choice of the lineariza
point, and the linearized equation now describes higher-o
effects. We will also see that~iv! all other choices of the
linearization point overestimate the Donnan effect in
lowest order, since they violate a rigorous inequality fro
the PB theory for the salt content in the colloidal suspens

Based on this optimal linearization scheme we then de
explicit analytical formulas for the osmotic pressure of s
pensions of charged mesoscopic objects in Sec. VI. Th
formulas hold for spherical, cylindrical, and planar shap
and should thus be useful in a broad variety of possible s
tems. The subsequent Sec. VII is devoted to comparing t
predictions with the full nonlinear PB theory.

Within the full PB theory the pressure is always positiv
Whether or not this also holds in the linearized theory
pends both on the choice of the linearization pointc̄ as well
as on the precise definition of the pressure itself. We pr
that the pressure is always positive for symmetric elec
lytes if one treatsc̄ as an independent variable. If one do
not, the pressure can become negative at low volume f
tions @25–31#. The implied liquid-gas coexistence—not b
ing present on the nonlinear level—is thus clearly an artifa
As a striking example we show that even a solution of DN
molecules under physiological conditions would be predic
to phase separate at all relevant densities.

II. GENERAL FRAMEWORK

In this section we start by introducing the physic
situation we wish to describe—namely, the Donn
equilibrium—and its theoretical description in terms of a c
model. The PB theory is founded on its grand potential fu
tional, and a brief derivation for the pressure~leading to the
boundary density rule! is presented.

A. The Donnan equilibrium

We study a suspension of charged mesoscopic obj
~henceforth simply referred to as ‘‘colloids’’! dialyzed
against a salt reservoir of given composition, as illustrated
Fig. 1. This situation is traditionally referred to as a ‘‘Donn
membrane equilibrium’’@32–34#. Much of our discussion
will be independent of the shape of the colloids, and our fi
explicit formulas will be valid for spherical, cylindrical, an
planar geometries. Even though the microions can trav
the membrane, their average concentration differs betw
the salt reservoir and the colloid compartment, since the
ter is already occupied by the counterions originating fr
the macroions, which cannot leave the compartment du
01140
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the constraint of global electroneutrality. This imbalance
average densities generates an osmotic pressure differ
that the membrane has to sustain and which we wish to
culate in the following.

For simplicity we assume the reservoir to be sufficien
large such that its ionic strength remains unchanged a
being brought in contact with the macroion solution. Th
assumption is not necessary, but simplifies our discussio
general theoretical issues. How it can be avoided is dem
strated in Ref.@34#. We also note that we will not describ
the solvent explicitly but rather replace it by a continuu
with relative dielectric constant« r .

B. Cell model and Poisson-Boltzmann theory

Theoretical concepts such as the cell model or PB the
have long become standard tools, so we will restrict o
selves to a brief description and only provide the ba
equations—essentially in order to introduce our notation a
terminology. A recent and more detailed exposition can
found in Ref.@35#.

The cell-model approximation attempts to reduce
complicated many particle problem of interacting charg
colloids and microions to an effective one-colloid problem
rests on the observation that at not too low volume fractio
the colloids—due to mutual repulsion—arrange their po
tions such that each colloid has a region around it that is v
from other colloids and looks rather similar for different co
loids. In other words, the Wigner-Seitz cells around two c
loids are comparable in shape and volume. One now assu
that ~i! the total charge within each cell is exactly zero,~ii !
all cells have the same shape, and~iii ! for actual calculations
one may approximate this shape such that it matches
symmetry of the colloid~for instance, spherical cells aroun
spherical colloids!. If the radius of the colloids isr 0, the cell
radiusR is chosen such thatf5(r 0 /R)d equals the volume
fraction occupied by the colloids. Here,d measures the ‘‘di-
mensionality’’ of the colloid in the sense thatd51, 2, and 3
corresponds to planar, cylindrical, and spherical colloids

FIG. 1. A solution of charged objects is in osmotic~Donnan!
equilibrium with a salt reservoir of given composition. The mem
brane is permeable for small ions only and has to support an ex
osmotic pressureDP. The mesoscopic objects are depicted
spherical~as appropriate, for instance, for ‘‘conventional’’ charge
colloids or micelles!, but our discussion will be more general an
will also apply to cylindrical entities~e.g., DNA, actin filaments,
TMV viruses! or planar objects~e.g., charged membranes, clay pa
ticles!.
1-2
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one~iv! neglects interactions between different cells, the p
tition function finally factorizes in the macroion coordinate
i.e., the thermodynamic potential of the whole suspensio
equal to the number of cells times the thermodynamic po
tial of one cell.

Within each cell the small ions assume some inhomo
neous distribution that arises from their interactions w
themselves as well as with the charged colloid. Comput
the corresponding partition function is impracticable, sin
all ions are correlated with each other. The Poiss
Boltzmann theory is the mean-field route to circumvent
precisely this problem. A very powerful way to formulate
starts from a thermodynamic potential functional belong
to the appropriate ensemble—which in our case is the gr
canonical one:

bV5E
V
ddr H 1

2
c~r!S r f~r!1(

i
v ini~r! D

1(
i

ni~r!$ ln@ni~r!L i
d#21%

2b(
i

m ini~r!J . ~1!

The meaning of the symbols is as follows:b[1/kBT is the
inverse thermal energy;c(r) is the local electrostatic poten
tial ~made dimensionless by multiplication withbe, wheree
is the positive unit charge!; the potential is generated by bo
the fixed charge densityer f(r) ~located, for instance, on th
colloid surface! as well as the distributionsni(r) of mobile
ions of speciesi, which have a signed valencev i , a chemical
potentialm i , and a thermal de Broglie wavelengthL i ; the
region of integrationV is understood to be the space with
one cell that is actually accessible to the small ions. T
functional minimization of Eq.~1! subject to the constraint
of Poisson’s equation and charge neutrality yields the se
Euler-Lagrange equations

ni~r!5L i
2debm ie2v ic(r)5ni ,be

2v ic(r). ~2!

Theni ,b are the concentrations of ions of speciesi in the salt
reservoir, where the electrostatic potential has been assu
to vanish. Combining Eq.~2! with Poisson’s equation result
in the nonlinear Poisson-Boltzmann differential equation
the potentialc(r) in the region within the cell accessible t
the microions. After introducing the Bjerrum length,B
ªbe2/« r , it is written as

Dc~r!524p,B(
i

v ini~r!52k2

(
i

v ini ,be
2v ic(r)

(
i

v i
2ni ,b

,

~3!

with the Debye screening constantk of the salt reservoir
defined by
01140
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ª4p,B(

i
v i

2ni ,b . ~4!

If we reinsert the solution of this equation back into t
functional ~1! and use Eq.~2!, we obtain its equilibrium
(5minimum) value, which is the grand potential of the no
linear PB theory:

bVeq5
1

2EV
ddr r f~r!c~r!2E

V
ddr(

i
ni~r!F11

1

2
v ic~r!G .

~5!

We want to close with the following remarks: The abo
variational principle can be constructed starting from the
equation~see, for instance, Ref.@20# and references therein!,
but this need not give a unique functional@36# and ~onceV
has been identified with the grand potential! appears like an
upside-down explanation for the key initial equation~2!.
However, the PB theory can be well justified by deriving t
functional ~1! from the underlyingHamiltonian. For in-
stance, it can be obtained as the saddle point of the fi
theoretic action@37–40#, as a density functional reformula
tion of the partition function combined with a first-order c
mulant expansion of the correlation term@21#, or from the
Gibbs-Bogoljubov inequality applied to a trial product sta
@35#. Those approaches also show that the PB theory p
vides an upper bound of the exact thermodynamic poten

C. The pressure in Poisson-Boltzmann theory

One advantage of the thermodynamic functional appro
to the PB theory is that it becomes immediately clear w
the pressure is—in the present ensemble, the derivativ
the grand potential~5! with respect to the volume. It prove
convenient to rewrite this in terms of the functional~1!,
which can be achieved as follows. The variation upon so
change in volume can be decomposed into the ‘‘orthogon
changes

dV5
]V

]V U
ni (r)

dV1E
V
ddr(

i

dV

dni~r!U
V

dni~r!, ~6!

where the first term contains any explicit dependence on
volume ~at fixed ion profiles! and the second part is the im
plicit dependence through the ion profiles~at fixed volume!.
However, since the equilibrium distributions make the gra
potential functional stationary with respect to variations
the density profile at fixed cell geometry, the implicit term
vanish. Hence, the pressure is just the negative derivativ
the grand potentialfunctional with respect to the cell vol-
ume, evaluated at the equilibrium profile. The derivative
]/]V is understood to imply a movement of the outer neut
cell boundary, which shall be located atr 5R, and which
only occurs in the boundaries of the volume integral in E
~1!. Note that rewriting the electrostatic energy in terms
the densities gives a double integral, and the product
then cancels the prefactor 1/2 in front of the term describ
the electrostatic energy. Putting everything together, one
rives at
1-3
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bP52
]bVeq

]V
52

]bV

]V U
eq

~7!

52(
i

ni~R!@v ic~R!1 ln$ni~R!L i
d%212bm i #eq

5(
i

ni ,be
2v ic(R) ~8!

5(
i

ni~R!. ~9!

This is the well known result@22# that within PB theory the
pressure is given by the sum of the ionic densities at the
boundary. It actually holds beyond the mean-field appro
mation@41#, but this will not be our concern in the following
Its generalization for more complicated cells can, for
stance, be found in Refs.@11,24#.

Equations~8! and ~9! give the pressure acting within th
macroion compartment. Theexcessosmotic pressure acros
the membrane is the difference between this pressure an
pressure in the salt reservoir. The latter is obtained with co
parative ease, since the electrolyte is homogeneous
hence the route via a density functional is unnecessary.
the same level of approximation as above it is given by
van’t Hoff equation

bPres5(
i

ni ,b . ~10!

This implies for the excess osmotic pressure across the m
brane

bDP5(
i

ni ,b~e2v ic(R)21!>0. ~11!

The last inequality follows fromex>11x and the fact that
the salt reservoir is neutral, i.e.,( iv ini ,b50. Hence, within
PB theory the excess osmotic pressure is always n
negative.

III. THE GRAND POTENTIAL IN LINEARIZED THEORY

When studying the linearized PB theory we want to be
efit from the same thermodynamic coherence as in the n
linear case. We can achieve this aim by likewise founding
key equations on a suitable grand potential functional
possibility that has previously been pointed out by Lo¨wen
et al. @21#.

First observe that a functional leading to a linearized v
sion of the PB equation necessarily is quadratic in the d
sities. The only part in Eq.~1! for which this is not already
true are the entropy termsni(r)@ ln(ni(r)L i

d)21#. Let us now

introduce a set of densitiesn̄i by ‘‘Boltzmann weighting’’ the
reservoir densitiesni ,b with an as yet unspecified potenti
value c̄:

n̄iªni ,be
2v i c̄. ~12!
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If we expand the entropic terms in Eq.~1! about the pointsn̄i
up to quadratic order, we obtain

bV lin5E
V
ddr H 1

2
c~r!S r f~r!1(

i
v ini~r! D

2
1

2 (
i

n̄iF112~11v i c̄ !
ni~r!

n̄i

2S ni~r!

n̄i
D 2G J .

~13!

We will refer to this expression as the grand potential fun
tional of the linearized PB theory, since its functional min
mization ~again, under the constraint of Poisson’s equat
and charge neutrality! leads to

ni~r!5ni ,be
2v i c̄ @12v i$c~r!2c̄%#. ~14!

This is the Boltzmann relation~2! linearized about the po
tential valuec̄. We want to stress right from the beginnin
that we leave the value ofc̄ unspecified for the time being
Linearized PB theory is not unique, it is a one-parame
family labeled by the expansion point. The by far most co
mon choice found in the literature isc̄50 ~strictly speaking,
the potential in the salt reservoir!, but this is not the only
conceivable~let alone optimal! possibility. In Sec. V we will
come back to this issue in greater detail.

Combination of Eq.~14! with Poisson’s equation yields
the linearized Poisson-Boltzmann equation

Dc~r!52k2H (
i

v i n̄i

(
i

v i
2ni ,b

2

(
i

v i
2n̄i

(
i

v i
2ni ,b

@c~r!2c̄#J
5k̄2@c~r!2c i#, ~15!

with the renormalized screening constantk̄ and the inhomo-
geneous termc i of the differential equation defined as

k̄25k2

(
i

v i
2n̄i

(
i

v i
2ni ,b

54p,B(
i

v i
2n̄i ~16!

and

c i5c̄1

(
i

v i n̄i

(
i

v i
2n̄i

. ~17!

Note, in particular, thatk̄ appears as a screening consta
calculated with the Boltzmann-weighted densitiesn̄i ; it is
hence different from the screening constant in the salt re
voir. For the special case of av:v electrolyte, this simplifies
to
1-4
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Dc~r! 5
v:v

k̄2c~r!2k̄2F c̄2
1

v
tanh~vc̄ !G ~18!

with

k̄25
v:v

k2 cosh~vc̄ !>k2. ~19!

If we reinsert the solution of Eq.~15! into the functional~13!
and use Eq.~14!, we obtain the equilibrium grand potentia
of linearized PB theory:

bV lin,eq5
1

2EV
ddr r f~r!c~r!2V(

i
n̄iF11

1

2
v i c̄ G

1
V

2 (
i

v i n̄i~11v i c̄ !^c~r!2c̄&. ~20!

The angular bracketŝ •••& denote the spatial averag
(1/V)*Vddr ••• over the part of the cell volume accessible
the ions.

IV. THE PRESSURE IN LINEARIZED THEORY

As mentioned in the Introduction, the computation of t
pressure in linearized PB theory has often been based
formulas originating from the nonlinear case or expansi
thereof@14–17#. For instance, one could use the predictio
for boundary potential or density from linearized theory a
insert them into formulas~8! or ~9!, respectively. However
although both formulas coincide on the nonlinear level, th
yield different results once the linearized equation is used
computec(R) or ni(R), since Eq.~2! no longer holds.

Here we circumvent this source of inconsistency
avoiding any recourse to results from nonlinear PB theo
Analogously to Sec. II C we base the pressure on the volu
derivative of the grand potential of linearized PB theory, E
~20!. This leads to a formula that gives the pressure a
function of the ionic profiles and which replaces the boun
ary density rule~9!.

A. Relevant thermodynamic variables

Before we differentiate the grand potential we would li
to pause for a moment and discuss the issue of relevant
modynamic variables, since the pressure formula will tu
out to depend on our choice for them.

The grand potential of nonlinear PB theory depends
volumeV, temperatureT, colloid chargeQe, volume fraction
f, and the set of chemical potentialsm i . In addition to these
variables the grand potential underlying thelinear theory
also depends on the linearization pointc̄. This proves a rel-
evant issue sincec̄ itself may depend on volume, see th
following Sec. V. For reasons that will become clear later
turns out to be extremely useful to considerc̄ as an indepen-
dent variable rather than insert the functional depende
c̄(V) into the potential and thereby eliminatec̄.

With this in mind, the thermodynamic definition of th
pressure within the linearized PB theory becomes
01140
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Plin
(1)
ª2S ]V lin,eq~V,T, . . . ,c̄ !

]V
D

T, . . . ,c̄

, ~21!

i.e., the partial derivative of the potential~20! with respect to
the volume, keeping all other variables fixed. This amou
to the following procedure: If one wishes to calculate t
pressure at a given volume, one first chooses the des
linearization pointc̄(V) at this volume, butfixes it subse-
quently. Then one measures the change in the grand pote
upon slightly changing the volume.

However, one could also argue thatṼ lin,eq(V, . . . )
ªV lin,eq„V, . . . ,c̄(V)… is the desired grand potential. In th
casec̄ is not regarded as an independent variable, bu
removed from the description by substitution. The press
from the derivative of this potential is then

Plin
(2)
ª2S ]Ṽ lin,eq~V,T, . . . !

]V
D

T, . . .

52S dV lin,eq„V,T, . . . ,c̄~V!…

dV
D

T, . . .

5Plin
(1)2S ]V lin,eq~V,T, . . . ,c̄ !

]c̄
D

V,T, . . .

dc̄~V!

dV
. ~22!

This is the total derivative of the grand potentia
V lin,eq„V, . . . ,c̄(V)… with respect to volume, and it differs
from Plin

(1) by an additional term that stems from the volum

dependence ofc̄. The incorporation of the constraintc̄(V)
amounts to the restriction of possible (V,c̄) values to a one-
dimensional submanifold. One hence compares values o
grand potential at neighboring points on that submanifo
along which one differentiates.

Figure 2 gives a schematic illustration of the differen
between these two definitions. Observe that definition~21!
implies that the grand potential can no longer be obtained
a volume integration of the pressure.

After these considerations we can now proceed with
aim to derive a formula that gives the pressure in terms of
solution of the linear equation.

B. The derivative of the functional

The same line of reasoning that led to Eq.~7! can be
employed to rewrite the derivative of the equilibrium gra
potential as a derivative of the grand potential functional
one again remembers that]/]V just corresponds to a move
ment of the outer neutral cell boundary, the pressure de
tion ~21! and Eq.~14! give
1-5
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bPlin
(1)5(

i
F2v ini~R!c~R!1

n̄i

2
1~11v i c̄ !ni~R!

2
1

2

@ni~R!#2

n̄i
G

eq

5(
i

ni ,be
2v i c̄F12v i@c~R!2c̄#1

1

2
v i

2@c~R!2c̄#2G
~23!

5
1

2 (
i

ni~R!Fni~R!

n̄i

1
n̄i

ni~R!G . ~24!

Equation~23! replaces Eq.~8! and is easily recognized as i
quadratic expansion aboutc̄. Similarly, Eq. ~24! replaces
Eq. ~9!. Sincex11/x>2, the expression~24! is larger than
( ini(R), i.e., the expression that would follow if the boun
ary density rule~9! were also correct in the linear case. A
ternatively, the latter follows by noting that the bounda
density rule is equivalent to thelinear expansion of Eq.~8!,
and the additional quadratic terms in Eq.~23! are positive
and render the pressure larger.

In the case of pressure definition~22! we need the explicit
volume dependence ofV lin,eq, which can again be rewritten
as the derivative of functionalV lin , Eq. ~13!. From Eq.~12!

follows immediately]n̄i /]c̄52v i n̄i , and one readily ob-
tains by using Eqs.~13! and ~14!

]V lin,eq

]c̄
5

]V lin

]c̄
U

eq

5
1

2
V^@c~r!2c̄#2&(

i
v i

3n̄i . ~25!

FIG. 2. Relation between the two pressure definitions from E
~21! and~22! discussed in the text. In the first scheme the derivat
is taken in the direction of increasingV along a coordinate line o

constantc̄; in the second scheme the derivative is taken tangen

to the submanifoldV„V,c̄(V)…, which emerges from restricting th

values (V,c̄) to these given by the defining equationc̄(V) of the
linearization point.
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Combining this with Eq.~22! results in an explicit formula
for Plin

(2) :

bPlin
(2)5bPlin

(1)2
1

2
V

dc̄

dV
^@c~r!2c̄#2&(

i
v i

3n̄i . ~26!

Note that unlikePlin
(1) , this expression depends on the who

potential distribution, and not just on the boundary poten
or the boundary densities.

Equations~23!, ~24!, and ~26! are the first key result of
this paper. They replace the boundary density rule~9! from
nonlinear PB theory, whose validity in the linear case h
often falsely been taken for granted. However, we sho
remark thatPlin

(1) and Plin
(2) differ from the boundary density

rule by terms that are essentially quadratic in the potentia
these are no longer reasonably small compared to the fi
order terms, the validity of linearization may well be que
tionable.

In the second part of this paper we will use the gene
pressure equations derived above to obtain explicit analyt
formulas, once we have established an optimal lineariza
point c̄, which will be the topic of the following section.

V. OPTIMAL CHOICE OF c̄

Up to now we have not specified the linearization pointc̄;
rather, we have emphasized that its choice is largely at o
disposition. However, not all choices may be equally s
cessful. In fact, the range of validity of linearization depen
strongly on the choice ofc̄, since it is thedifferencebetween
the potential and its linearization point that is required to
small and not the potential itself. This is particularly impo
tant in concentrated suspensions where this difference ca
small even when the total potential is quite large.

In this section we identify an optimal linearizatio
scheme—which, however, first requires a clarification
what ‘‘optimal’’ is supposed to mean. It proves instructive
first study the obvious~but futile! attempt to base optimality
on a minimization of the grand potential, as we discuss
Sec. V A. This sheds some surprising light onto tradition
linearization. In Sec. V B we will then discuss a schem
based on the self-consistently determined average pote
and present its optimal aspects in Sec. V C, which e
though this approach has been used in the past@15,23–25#
have largely gone unnoticed.

A. Minimizing the grand potential

One may try to obtain an optimal expansion point
looking for the value ofc̄ that minimizes the grand potentia
of linear theory. Let us thus set the derivative ofV lin,eq, Eq.
~20!, with respect toc̄ to zero. Using Eq.~25! and remem-
bering that ^(c(r)2c̄)2& is nonzero unless the profile i
completely flat, we see that the value ofc̄ at the extremum is
given by the solution of( iv i

3ni ,be
2v i c̄50. The left-hand

side is a sum of strictly monotonically decreasing functio
If ions of both sign are present, the left-hand side hence f

s.
e

al
1-6
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monotonically from 1` to 2` and the equation has
unique solution. Unfortunately, however, this monotonicde-
creaseof the derivative also implies that this solution corr
sponds to amaximumof the grand potential. For a symmetr

v:v electrolyte, the solution is, for instance, given byc̄50.
The most widely used choice of the expansion point, hen
gives thelargestgrand potential of all possible linearizatio
schemes~this can, for instance, be verified in Fig. 1 of Re
@25#, which shows the thermodynamic potential for vario
linearization schemes!.

We hasten to remark that the above finding has to be
in the correct perspective. Minimization is only a meaning
venture if one can be sure about the existence of a lo
bound@42#. For instance, the PB functional is bounded b
low by the exact thermodynamic potential of the restric
primitive model. Minimizing the functional stems from th
desire to get as close to this result as is possible withi
mean-field description@35#. For the parameterc̄ from linear-
ized PB theory, such a lower bound for the functional can
be constructed, hence minimization is meaningless. A
even if there were a bound, there would be no reason
approach it—unless one knows that it is favorably related
the actual thermodynamic potential.

B. Expansion about the average potential

Having seen that a minimization condition onV lin,eq is
not successful, we will approach the problem from a diff
ent direction. If we average Eq.~14! over the cell volume
and use Eq.~12!, we find

^ni~r!&5n̄i2v i n̄i^c~r!2c̄&. ~27!

If we were to choosêc(r)2c̄&50, the second term would
vanish and the expansion pointsn̄i for the densities would
coincide with the averageŝni(r)&. It clearly makes sense t
expand about these average values, since then the differe
between the actual value and expansion point can be
small throughout the cell, i.e., in the whole region in which
linearization must work. Hence, the choice

c̄5c̄optª^c~r!& ~28!

is a particularly suitable one, which, in anticipation of t
results from Sec. V C, we have labeled with the index ‘‘op

At first sight this particular choice may seem difficult
work with, since the averagêc(r)& determines the value o
c̄opt, but the potentialc(r) to be averaged is in turn th
solution of the equation linearized aboutc̄opt. However, the
necessary self-consistency is readily fulfilled, since^c(r)&
~and thusc̄opt) depends only on the state point and not on
actual ionic profile: For reasons of electroneutrality the to
charge of all ions in the cell must be the negative of
colloid charge, and so we have, using Eqs.~27! and ~28!,

2
Q

V
5(

i
v i^ni~r!&5(

i
v ini ,be

2v i c̄opt. ~29!
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Satisfying this equation is necessary and sufficient for
validity of Eq. ~28!, so we can determinec̄opt also from Eq.
~29!. If the electrolyte contains ions of both signs, the righ
hand side monotonically decreases from1` to 2` as a
function of c̄opt, so a solution always exists and is uniqu
For the special case of av:v electrolyte with reservoir den
sity nb this equation becomes very easy. First define the v
able

uª
n̄c

2nb
, ~30!

which is just the ratio between the mean density of coun
rions in solution,n̄cªuQu/vV, and the density of salt ions in
the reservoir, 2nb . Using this, Eq.~29! reduces to

sinh~vc̄opt! 5
v:vQ/vV

2nb
5u sgn~Q!, ~31!

which is easily solved forc̄opt. It also shows that~the modu-
lus of! c̄opt is large if we are in the counterion dominate
regime (u large! and small if we are in the salt dominate
regime (u small!.

C. Optimality of c̄opt

The linearization scheme from the above Sec. V B h
been put forward several times in the past@15,23–25#, but its
various special properties have gone unnoticed. In this s
tion we show in what sense this scheme can be regarde
optimal.

Since the choice ofc̄opt implies that the expansion point
n̄i coincide with the average microion densities^ni(r)&, this
translates to the corresponding screening constantk̄opt,
which—as Eq.~16! shows—is now also calculated with th
average ionic strength within the cell:

k̄opt
2 54p,B(

i
v i

2^ni~r!&. ~32!

Due to the Donnan effect the latter is different from that
the reservoir, and it is more appropriate to have a linear
tion scheme that derives its screening constant from the
tual ion densities in the macroion compartment. In fact,
scribing the colloidal system in an integral-equati
approach together with the mean spherical approxima
closure yields an effective pair potential between collo
that is a screened Coulomb potential with the screening c
stant being equal tok̄opt—see, for instance, Ref.@11#.

Let us make the above remarks more explicit by spec
izing to a symmetricv:v salt of reservoir concentrationnb .
In this case the optimal screening constant can be expre
as
1-7
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k̄opt
2 5k2 cosh~vc̄opt! @Eq. ~19!#

5k2A11u2 @Eq. ~31!#

58p,Bv2nbA11~ n̄c/2nb!
2 @Eqs.~4! and~30!#

54p,Bv2An̄c
21~2nb!

2. ~33!

This expression differs from the screening constant of
salt reservoir by also incorporating the contribution due
the counterions. It is illuminating to study its limiting beha
iors at high and low salt concentration. In the salt domina

regime, i.e.,u!1 or n̄c!2nb , the screening constantk̄opt is
practically identical to the reservoir screening constantk.
This is the limit in which the Donnan effect is strongly d

minished, and Eq.~31! also shows that in this casec̄opt→0.

In the opposite limit of counterion domination,u@1 or n̄c

@2nb , the screening constantk̄opt is essentially determined
by the average counterion concentration, and it will be s
stantially larger than the screening constant of the reserv

In this limit the Donnan effect is strong andc̄opt is signifi-
cantly different from zero. The traditional linearizatio

schemec̄50 will fail to adequately describe this case, ev
though the ionic profiles can be very flat and thus amena
to linearization. In summary, we see that linearizing the

equation aboutc̄50 invariably ignores the counterion con
tribution to the screening, whereas the expansion about
self-consistently determined average potential includes
counterions in a way that yields the correct behavior in
limits of high and low salt.

The fact that a strong Donnan effect goes along with
value ofc̄opt substantially different from the reservoir pote
tial is also to be expected on more fundamental grounds:
difference in microion concentrations across the membr
characteristic of the Donnan equilibrium implies a concom
tant jump of the electrostatic potential, referred to as
‘‘Donnan potential.’’ Within the cell model this is just th
potential at the cell boundary,c(R). Its magnitude can like-
wise be used to measure the strength of the Donnan ef
But a large Donnan potential also results in a large aver
potential. This close connection between the Donnan e
librium and the optimal linearization scheme led the auth
of Ref. @25# to suggest the name ‘‘Donnan linearization’’@43#
for the scheme from Eq.~28!.

The above findings can be succinctly reformulated in
following way: By choosing the optimal linearization poin
c̄opt the Donnan equilibrium is automatically described c
rectly to lowest order. The solution of the linearized P
equation then provides the higher-order corrections. We n
show thateveryother linearization point gives a descriptio
that violates an important zeroth-order inequality valid
the nonlinear PB level. Let us first specialize to av:v elec-
trolyte. If we denote byn̄c the average density of counterion
and by n̄s the average density of salt molecules within t
cell, we have within the Poisson-Boltzmann theory,
01140
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~ n̄c1n̄s!n̄s5^n1~r!&^n2~r!&5nb
2^e2vc(r)&^evc(r)&

>nb
2e2v^c(r)&ev^c(r)&5nb

2, ~34!

where Jensen’s inequality@44# has been used. Equation~34!
states that the mean ionic molarity@45# within the suspension
is greater than in the reservoir. On the other hand, within
linearizedPoisson-Boltzmann theory we find

~35!

This is the inequality~34! but with a reversed inequality

sign. Observe that linearizing aboutc̄opt is theonly scheme
that does not violate Eq.~34!, since Eq.~28! renders Eq.~35!
an equality. The importance of these two inequalities can
further unveiled by solving them for the average salt conc
tration n̄s inside the suspension, which gives the sequenc

n̄suPB>n̄suLPB,c̄opt
>n̄suLPB ~36!

with

2n̄suLPB,c̄opt
5An̄c

21~2nb!
22n̄c . ~37!

In other words, linearized PB theory gives a lower bound
the average salt density within the cell, andc̄opt gives the
largest lower bound. Since underestimatingn̄s means over-
estimating the Donnan effect, thec̄opt scheme gives as clos
a representation of the Donnan equilibrium as is possible
linear theory. Observe also that the prediction~37! for n̄s
from Donnan linearization is indeed the well known formu
describing the Donnan effect after neglecting activity coe
cients~see, for instance, Refs.@33,46#!. In that sense the se
of inequalities~36! lies at the heart of the Donnan equilib
rium and distinguishesc̄opt as optimal.

It is possible, although not straightforward, to extend t
above considerations to general electrolyte compositions
that case one has to look at more refined combinations
densities, also taking into account to what percentage a
ticular species is represented in the ionic mixture. One p
sibility is the following: Define the average

Aª(
i

pi ln
^ni~r!&

ni ,b
with piª

ni ,b

(
j

nj ,b

, ~38!

which is inspired by a similar procedure employed wh
defining mean activity coefficients@45#. Within PB theory
we can readily derive

A5
PB

(
i

pi ln^e2v ic(r)&>2^c~r!&(
i

piv i50, ~39!
1-8
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where Jensen’s inequality has again been used. The last
follows from the charge neutrality of the salt reservoir. Ho
ever, within linearized PB theory we get

A 5
LPB

(
i

pi ln^e2v i c̄@12v i$c~r!2c̄%#&

5(
i

pi ln@12v i^c~r!2c̄&#

<2^c~r!2c̄&(
i

piv i50. ~40!

Here, the elementary inequality ln(11x)<x has been used. I
is straightforward to see that the relations~39! and ~40! re-
duce to the inequalities~34! and ~35! for a v:v electrolyte.
Nonlinear and linearized PB theory again lead to conflict
inequalities in all but one case: Ifc̄opt is chosen as the lin
earization point, the PB inequality is not infringed.

VI. EXPLICIT EXPRESSIONS AND APPROXIMATIONS
FOR d-DIMENSIONAL CELL MODELS

In Sec. IV we gave expressions of the pressure in term
the charge or potential profiles that were based on the de
tive of the grand potential. In this section we will substan
ate these results by inserting the actual solution of the lin
ized PB equation for ad-dimensional cell model@47#. We
will place particular emphasis on the formulas that eme
from using the optimal linearization pointc̄opt that we have
discussed in the preceding section.

A. Analytical formulas for the pressure

In the Appendix we outline how the linearized PB equ
tion can be solved for a generald-dimensional cell mode
~where d51, 2, and 3 corresponds to planar, cylindric
and spherical macroions, respectively!. If we insert the final
expression~A5! into the pressure equation~23!, we get the
explicit formula

bPlin
(1)5(

i
n̄i2

1

2 F 12g2S Q/V

(
i

v i n̄i
D 2G S (

i
v i n̄i D 2

(
i

v i
2n̄i

,

~41!

where the variableg is defined as

gª
12f

dDAf
~42!

andD is given in Eq.~A4!. In the case of Donnan lineariza
tion 2Q/V5( iv i n̄i according to Eq.~29!, such that Eq.~41!
further reduces to
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bPlin
(1) 5

c̄opt

(
i

n̄i2
1

2
~12g2!

S (
i

v i n̄i D 2

(
i

v i
2n̄i

. ~43!

The case of the alternative pressure definition@Eqs. ~22!
and ~26!# requires the evaluation of some integrals ov
modified Bessel functions entering the expression^@c(r)
2c̄opt#

2&. After some algebra we obtain for the case of o
timal linearization the final formula

bPlin
(2) 5

c̄opt

bPlin
(1)2

1

2 (
i

v i
3n̄iS (

i
v i n̄i

(
i

v i
2n̄i

D 3

3H 12f

2df F 1

D2
2~d22!x0

E

D
1x0

2S 12
E2

D2D G21J ,

~44!

whereE5Kd/221(x0)I d/2(X)1Kd/2(X)I d/221(x0), x05k̄r 0,
andX5k̄R.

The explicit pressure formulas~41!, ~43!, and ~44! are a
further key result of this paper, and in the remainder we w
study some of their consequences. Unfortunately, due to
algebraic complexity their properties cannot be readily se
In the following subsection we will, therefore, spend som
time to study their analytical behavior in a few importa
limiting cases. Finally we will provide graphical illustration
for the pressure formulas for several typical cases in S
VII.

B. Pressure bounds, limiting behavior, and expansions

The pressure formula~23! is quadratic inc(R), and it is
easily checked that it takes its minimum value at the inh
mogeneityc i defined in Eq.~17!. From Eq. ~A5! and the
definition of g in Eq. ~42! we see that this formally corre
sponds tog50, and indeed the pressure expression~41! at-
tains its minimum value there. For a symmetricv:v electro-
lyte this implies for theexcessosmotic pressure,

bDPlin,min
(1)

2nb
ª

b~Plin,min
(1) 2Pres!

2nb

5 cosh~vc̄ !2
1

2
sinh~vc̄ ! tanh~vc̄ !21

5
@cosh~vc̄ !21#2

2cosh~vc̄ !
>0. ~45!

Hence, in the symmetric case the pressure from the lin
ized PB theory defined via Eq.~21! is non-negative for every
chosen linearization pointc̄. However, this does not hold fo
general electrolytes. It may be verified that for the asymm
ric case of a 1:2 electrolyte, the excess pressure is nega
1-9
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if c̄ has the same sign as the divalent ion species anduc̄u
P@0;0.6309#. In Donnan linearization this comes down
the requirement thatQ has the same sign as the divale
species and 0<uQu<1.596nbV, where nb is the reservoir
density of the monovalent species. Essentially, the pres
can become negative when the counterion content within
cell is overwhelmed by the salt ions.

Let us now restrict again to a symmetricv:v electrolyte
and recall the variableu from Eq. ~30!, which assesses th
relative importance of counterions and salt ions to
screening. The definition~30! shows thatu is small if either
V is large~i.e., the volume fraction of colloids is low! or nb
is large ~i.e., much salt has been added to the system!. In
both casesk̄optR becomes large and we may exploit th
asymptotic behavior of the modified Bessel functions@48# to
approximate the quantityD from Eq. ~A4! according to

D.Kd/2~ k̄optr 0!I d/2~ k̄optR!

.
Kd/2~ k̄optr 0!

A2pk̄optR
ek̄optR

.
k̄optr 0@1 ek̄opt(R2r 0)

2k̄optARr0

.

Hence, g}1/D vanishes exponentially. The pressurePlin
(1)

will thus approach its minimum value computed abov
Since in this limit c̄opt→0, we may expand Eq.~45! for
small c̄opt and obtain

bDPlin,min
(1)

2nb
.

u!1 ~vc̄opt!
4

8
.

u4

8
, ~46!

using Eq. ~31!, showing that the excess osmotic press
~measured in units of the reservoir concentration! vanishes as
the fourth power ofu. We note in passing that the lowes
order calculation based merely on the average counte
concentrationn̄c from Eq. ~37! ~or, alternatively, the bound
ary density from the salt-free PB theory@17#! gives instead
the asymptotic behavioru2/2, i.e., only a quadratic depen
dence.

The full expression~43! contains a term that appears to
of secondorder inu, namely,u2g2/2. Sinceg vanishes ex-
ponentially, one could be led to the incorrect conclusion~by
‘‘prematurely’’ terminating the expansion at this point! that
the pressure in linearized PB theory also vanishes expo
tially @15#. While it is in fact true that in the fullnonlinear
theory the pressure vanishes exponentially in the limit of
domination~a simple plausibility argument for this can b
found in Ref. @35#!, this does not hold for the linearize
theory@49#, where the exponential decay of the termu2g2/2
is masked by the quartic asymptotic from Eq.~46!. In any
case, one has to be a little bit careful about the phys
meaning of this limit. It indeed correctly describes asingle
charged colloid immersed in an electrolyte. However, a
lute suspensionof many colloids is not well described in thi
01140
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limit, since the lack of mutual repulsions renders some ba
assumptions about the cells questionable. Furthermore,
must keep in mind that our formulas only give the osmo
pressure of the suspension due to themicroions. Even though
this contribution most often dominates just because there
many more microions than macroions, the contribution of
latter has to become dominant once the microion term v
ishes exponentially.

The limit of large volume fraction,f→1, requires a little
more care. UsingR5r 0f21/d, an expansion ofD aroundf
51 gives to lowest order

D .
f→1x0

2
$Kn11~x0!@ I n~x0!1I n12~x0!#

1I n11~x0!@Kn~x0!1Kn12~x0!#%~f21/d21!,

with n5d/221 and x05k̄optr 05kr 0(11u2)1/4. Since u
}1/(12f), both u andx0 diverge asf→1. x0/2 times the
expression in curly brackets approaches 12c/x0

2 with c
5(d221)(d213)/64 @48#. The termg, therefore, behaves
asymptotically like

g .
f→1 12f

d~12c/x0
2!~f21/d21!Af

.11
c

x0
2

. ~47!

This shows that 12g2 is of order 1/u. Using this, it is now
straightforward to show that to lowest order the high volum
fraction limit of Eq. ~43! is given by

bPlin
(1) .

f→1

n̄c . ~48!

This equation is simple to interpret: It states that the press
is given by the average counterion density. This is reas
able, because in this limit the ionic profiles become flat~and
thus the electrolyte ideal! and all the salt is expelled from th
cell. Indeed, Eq.~48! merely states that the osmotic coef
cient goes to 1. We hasten to add that Eq.~48! only demon-
strates the proper behavior within the cell model. Real s
pensions crystallize at large enough volume fraction
transition that can only be described correctly once one
counts for the ordered phase as well—see, for instance, R
@26,28,50–53#. But in order to get the phase boundary righ
one of course also needs a good estimate of the grand po
tial in the fluid phase, so the correct scaling of the optim
linearization at high volume fraction is after all practical
important.

Within Donnan linearization positivity of the pressu
does not generally hold for the second pressure defini
~22!, not even for symmetric electrolytes. First, observe t
in the limit u→0 the ratio E/D in Eq. ~44! approaches
Kd/221(x0)/Kd/2(x0). Hence, ford53 the term in the square
brackets from Eq.~44! approachesx0

3/(11x0)2, implying an
asymptotic excess pressure of

bDPlin
(2)

2nb
.

X@1,d53

u3S 5

8
u2

uQuk,Bv2

4~11kr 0!2D . ~49!
1-10
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In the limit u→0 the expression in the parentheses becom
negative, and so doesDPlin

(2) . The same holds ford51, in
which case we find

bDPlin
(2)

2nb
.

X@1,d51

u3S 5

8
u2

v
4klGC

D , ~50!

where lGC51/2p,Bvusu is the Gouy-Chapman length o
the charged planar surface with charge densityes. For d
52 an analytic treatment is complicated by the fact thatK0
and K1 cannot be expressed as simple functions. Howe
for generald we can proceed if we assume that alsox0@1,
which, for instance, holds at sufficiently high salt content.
this case, an asymptotic expansion@48# gives

Kd/221~x0!

Kd/2~x0!
5

x0@1

11
12d

2x0
1

d221

8x0
2

1O~x0
23!. ~51!

Inserting this in Eq.~44! yields

bDPlin
(2)

2nb
.

X,x0@1

u4S 5

8
2

x0~12f!

4df D , ~52!

showing again thatDPlin
(2) becomes negative in this limit. To

avoid confusion we want to explicitly stress that this beh
ior of DPlin

(2) clearly contradicts the results from nonlinear P
theory and hence should be considered as an artifact of
particular linearization scheme and pressure definition.

Let us close with a few remarks on the pressure in
traditional linearization schemec̄50. Since the linearization
point is volume independent, the two pressure definitio
~21! and ~22! coincide. If one calculates the excess osmo
pressure by insertingc̄50 into Eq. ~23!, one finds that the
zeroth order is canceled by the reservoir pressure, while
first order drops out due to reservoir electroneutrality, giv

bDPlin 5
c̄501

2
c~R!2(

i
v i

2ni ,b5
~Q/V!2

2(
i

v i
2ni ,b

g2. ~53!

In the special case of av:v electrolyte this simplifies furthe
to bDPlin/2nb5u2g2/2 ~recognize the ‘‘second-order’’ term
from above!. Equation~53! shows that this pressure is a
ways positive. Moreover, in the limit of lowf or large salt it
vanishes exponentially asg2; exp(22kR)—just as in the
full PB theory. Even thoughc̄opt also approaches zero in th
limit, the corresponding pressure asymptotics is domina
by the way in which it does so, yielding a power law
discussed above. In the opposite limit of largef we have
seen above thatg→1, hence for thev:v case the pressur
using c̄50 linearization asymptotically behaves lik
bDPlin;n̄c

2/4nb , i.e., it diverges quadratically inn̄c and not
linearly as it should. We finally note that a quadratic expr
sion such as Eq.~53! has recently been rederived in Ref.@54#
by using a perturbative expansion of the PB equation
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restricting to lowest order. However, in this approach it
difficult to see that this is in fact thermodynamically cons
tent.

VII. COMPARISON WITH NONLINEAR PB THEORY

In this section we provide a comparison of the above pr
sure formulas with the results from nonlinear PB theory@55#,
which is intended to clarify and illustrate the finding
from the previous sections. Apart from the pressure,
will also calculate thecompressibility, which is defined as
K5(1/V)(]V/]DP). For a graphical representatio
it is however more convenient to plot the reduced inve
compressibility]bDP/]n̄c51/n̄ckBTK, where the average
density of counterions is again defined byn̄c5uQu/vV.

In order to underline the generality of the formulas d
rived above, we will use the following three different situ
tions: ~i! spherical colloids in a 1:1 electrolyte,~ii ! cylindri-
cal colloids in a 1:1 electrolyte, and~iii ! spherical colloids in
a 1:2 electrolyte.

The first system we study consists of spherical colloids
chargeQ53500 and radiusr 05133 nm immersed in an
aqueous solution~i.e., ,B50.714 nm) that is dialyzed
against a 1:1 electrolyte of rather low molarity 3.6mM. Mo-
tivated by the prediction of a gas-liquid phase separation
these parameters@28#, the authors of Ref.@25# used them as
an illustration that pushes linearized theory to the limits
validity, making the way in which it deviates from the P
theory particularly visible. Lowering the colloidal charge e
tails a successively better agreement between the linear
the nonlinear theory, as can also be seen in Ref.@25#.

Figure 3 shows the pressure~left! and the inverse reduce
compressibility~right! as functions of volume fractionf.
The solid line corresponds to the solution of the nonline

FIG. 3. Pressure~left! and inverse reduced compressibili
~right! as a function of volume fractionf for a solution ofspherical
colloids having a bare chargeQ53500 and a radiusr 05133 nm.
The system is in contact with a dilute 1:1 electrolyte of concen
tion 3.6 mM and the Bjerrum length is,B50.714 nm, correspond
ing to water at room temperature. The solid curve is the result fr
nonlinear PB theory, the bold dashed curve is the first press
definition~23! combined with the optimal linearization from Sec. V
leading to the explicit expression~43!, while the dotted curve com-
bines this scheme with the second pressure definition~26!, leading

to the explicit formula~44!. The fine dashed curve usesc̄50, in
which case both pressure definitions coincide and the explicit
mula ~53! applies.
1-11
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PB equation. The pressure is given by Eq.~9! and the excess
pressure is always positive@see Eq.~11!#. The same holds for
the compressibility@56#. The dashed and dotted curves co
respond to the solutions from linearized PB theory. Forc̄
50, both pressure definitions~21! and ~22! coincide, but in
this case the predictions are clearly off from the PB res
except at very low volume fraction. In contrast, using t
optimal linearization pointc̄opt from Sec. V B brings abou
the correct behavior at high volume fraction, i.e., in the
gime where the cell model is particularly appropriate a
linearization should indeed work because of relatively
ionic profiles.

The pressure definition~22!—the total derivative of the
grand potential V„V,T, . . . ,c̄opt(V)… with respect to
volume—corresponds to that employed in Ref.@25#. It can
be seen to lead to negative pressures and compressibiliti
moderately low volume fractions, which would imply a se
regation into a dense and a dilute colloidal phase. Suc
phase transition has also been claimed in other recent t
retical works @26,28,29,31#, which likewise are essentially
based on the linearized PB theory. However, the similarity
the resulting phase diagrams, the appearance of essen
the same ‘‘volume terms’’ in the grand potential~which here
are responsible for the effect!, and the fact that the full PB
theory does not show any phase transition, lead the aut
of Ref. @25# to question these claims of a gas-liquid coexi
ence in such systems as a spurious side effect of linea
tion. In a similar spirit, Diehlet al. @30# show~within a gen-
eralized Debye-Hu¨ckel-Bjerrum approach@57,58#! that
explicitly reincorporating the effects of counterion conden
tion, which are neglected when doing the linearization,
moves~or at least strongly suppresses! the phase transition
that is otherwise clearly visible. We remark that Fig. 1
Ref. @30#, showing the excess osmotic pressure as a func
of volume fraction for a salt-free suspension of spheri
colloids with varying bare charge, can be reproduced alm
quantitatively within the cell model by using Donnan linea
ization and employing the pressure definition~22!. While
these warnings about the dangers of linearization are
tainly well made, we want to point out that things are in fa
even a little more subtle: Not even linearized theory need
show the phase transition. Whether or not it does so depe
crucially on the pressure definition as well as the lineari
tion point. For c̄50 there is no phase transition. Forc̄

5c̄opt there is a phase transition only if pressure definit
~22! is used. The definition~21!—which is based on thepar-
tial derivative of the grand potential with respect
volume—yields a positive compressibility.

Let us emphasize that this pressure definition~21! could
only be written down once the linearization point has be
recognized as an independent variable. And since it is
volume dependence ofc̄opt that rendersPlin

(2) negative, it
must also be related to the ‘‘volume’’ terms discussed
Refs.@25,26,28,29,31# ~see also Ref.@59#!. Our formulation
of the problem hence illustrates that the way in which th
terms drive a phase transition is closely related to the ch
of which variables one intends to keep constant when dif
entiating the thermodynamic potential. Within thecell model
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it is obvious that the PB theory only yields positive pre
sures, but when relaxing the constraints of a cell mode
mean-field PB theory the nature of effective interactions
much less obvious. See, for instance, Ref.@11# for a recent
critical evaluation of the theoretically as well as experime
tally subtle issue of phase separation in suspensions
spherical colloids.

In our next example we turn to a physical system th
differs in the geometry of the colloids and that is~quite lit-
erally! of vital importance. Figure 4 shows pressure a
compressibility of an aqueous solution of cylindrical co
loids, i.e., charged rods, which have a radius ofr 0
51.2 nm and a line charge density of one charge per 1.7
~or 4.2 charges per Bjerrum length! dialyzed against a 1:1
electrolyte of concentration 100 mM. The colloid is muc
stronger charged than in the spherical situation above, in
sense that the surface charge density is a factor of 50 la
On the other hand, the salt concentration is also much la
~with the reservoir screening length being only 0.6% of t
screening length in the above low-salt case!, which keeps the
potentials low. The above choice of values corresponds
DNA in a physiological salt environment. As Fig. 4 show
nonlinear PB theory again gives positive pressure and c
pressibility for all volume fractionsf, and the large-f be-
havior is captured correctly if Donnan linearization is em
ployed, while the choicec̄50 fails there. However, using
c̄opt and the definition~22! results in a pressure that is neg
tive for f&17% and a negative compressibility forf
&11%. If this were true, all DNA in animal cells would ten
to aggregate and phase separate. But again, this failure i
an inevitable artifact of linearization, since the pressurePlin

(1)

is perfectly positive and gives rise to positive compressib
ties. Incidentally, DNAcan be condensed, but this require
multivalent ions@60# and is known to be a correlation effec
which is missing in the PB theory, see, for instance,@61–63#.

The Poisson-Boltzmann theory and the linearizat
scheme employingc̄50 predict an exponentially vanishin
pressure asf→0. However, as we have remarked above,
pressure due to themacroionshas to become significant a
some point~see Ref.@64# for measurements on DNA in low
salt solutions, which appear to support this view!. For linear
polyelectrolytes this is even more relevant than for spher

FIG. 4. Same plots as in Fig. 3, but forcylindrical macroions
having a charge parameterj54.2 ~i.e., 4.2 charges along the ax
per Bjerrum length! and a radiusr 051.2 nm ~those values corre-
spond roughly to DNA!. The system is in contact with a dilute 1:
electrolyte of physiological salt concentration 100 mM. The li
styles are the same as in Fig. 3.
1-12
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colloids, since the conformational degrees of freedom
the degree of entanglement becomes important@65#.

In our final example we study an asymmetric electroly
We go back to the system of spherical colloids studied ab
and replace the ions of one sign by divalent ones, i.e.,
assume a 1:2 electrolyte of concentration 3.6mM, which, in
particular, implies that the divalent species occurs with
concentration of 1.8mM in the reservoir. According to the
discussion in Sec. VI B the case in which the colloid has
same sign of charge as the divalent ions is particularly in
esting, since then the positivity of the pressure cannot
guaranteed even for the pressure definition~21!. For this case
Fig. 5 shows again pressure and compressibility as a func
of volume fraction. The PB theory is once more found
give positive results, and the same remarks as above a
the poor high-f behavior of the linearization pointc̄50
compared toc̄5c̄opt apply also here.

However, there is an~expected! difference concerning the
behavior ofPlin

(1) , which becomes~very slightly! negative for
f&0.68% and gives rise to negative compressibility forf
&0.51%, as is illustrated in the insets. In Sec. VI B we ha
seen that the pressurecan become negative if uQu
<1.596nbV, which in this case impliesf&0.96%—and in-
deed, loweringf by further 30% brings about the negativ
pressure. We mention in passing that with a colloid hav
the opposite sign of charge as the divalent species, this
not occur.

VIII. CONCLUSION AND SUMMARY

The main motivation of the present paper has been
following question: How can the membrane pressure due
Donnan equilibrium best be described within linearized
theory? This first required a clarification of~i! how one com-
putes the pressure and~ii ! what one means by ‘‘best.’’ Often
the pressure has been computed~without much justification!
by using the predictions of the linearized PB equation
formulas of the nonlinear theory~or expansions thereof!;
moreover, this recourse to the full theory is not unique a
hence prone to inconsistencies. These problems are avo

FIG. 5. Same plots as in Fig. 3, but for a 1:2 electrolyte. T
colloid charge has the same sign as the divalent ions, the rese
density of the monovalent ions is 3.6mM. The inset in the left
panel magnifies the regions@0;0.008#3@20.003;0.003#, while the
inset on the right magnifies@1024;1022#3@20.01;0.005#, showing
that in this example the first pressure definition~21! also gives
negative pressures and compressibilities, while the PB result
not. The line styles are the same as in Fig. 3.
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by starting from the appropriate thermodynamic poten
functional of linear theory, which, however, still leaves tw
alternative definitions for the pressure that differ in th
treatment of a possible volume dependence of the linear
tion point. Neither definition predicts the pressure to be p
portional to the density of microions at the outer cell boun
ary, i.e., the well known result from nonlinear PB theo
does not apply on the linearized level. All this can be d
cussed without fixing the expansion point, but optimal
considerations nevertheless suggest a specific choice fo
Explicit formulas can be obtained, since the linearized
equation can be solved analytically for general cell mode

Let us thus summarize the key findings of this work.
~a! The linearized PB theory can be based on a den

functional that is the quadratic expansion of the well kno
functional of nonlinear PB theory. The choice of the expa
sion point distinguishes different linearization schemes. T
equilibrium value of this functional is the thermodynam
potential, in our case the grand potential.

~b! The pressure is given by the volume derivative of th
thermodynamic potential. One has to make a decision a
whether or not one would like to keep the linearization po
fixed, resulting in two different pressure definitions, whi
feature both advantages and drawbacks.

~c! Thermodynamic consistency requires the bound
density rule~9! from nonlinear PB theory to be replaced b
the quadratic expansion of the nonlinear formula in t
boundary potential. On the other hand, if the deviation fro
the boundary density rule becomes large, this may provid
sign that linearization begins to fail.

~d! The range of validity of linearization depends on t
expansion point. We proved that linearization about the s
consistently determined average potential is optimal—in
sense that it automatically describes the Donnan effect
rectly in lowest order, leaving the linearized PB equation
incorporate higher-order corrections. Furthermore,
showed that all other linearization schemes violate an imp
tant inequality from nonlinear PB theory related directly
the Donnan effect.

~e! The linearized PB equation can be solved exactly
symmetric cell models of arbitrary dimension, salt reserv
composition, and linearization point. We used this solution
derive explicit formulas for the pressure and have discus
their analytical properties in detail.

~f! A comparison with the results from nonlinear P
theory has been performed, showing that the validity of l
earization depends strongly on the linearization point. Wh
the traditional linearization scheme completely fails to d
scribe the important limit of large volume fraction, the op
mal ~Donnan-! linearization becomes asymptotically corre
there.

~g! For pressure definition~22!, i.e., thetotal volume de-
rivative of the grand potential, negative pressures and c
pressibilities can occur. These findings have previously b
taken as indications of a gas-liquid phase separation in
pensions of spherical colloids. In the present work
showed that the same theoretical reasoning would pre
DNA to phase separate under physiological conditions at
relevant concentrations. We consider this as a further strik

oir

es
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MARKUS DESERNO AND HANS-HENNIG von GRU¨ NBERG PHYSICAL REVIEW E66, 011401 ~2002!
argumentagainstthe genuineness of the transition.
~h! In nonlinear PB theory the pressure is always positi

Whether or not this still holds on the linearized level depen
crucially on the precise definition of the pressure itself. D
fining the pressure via thepartial derivative of the grand
potential with respect to the volume~i.e., keeping in particu-
lar the linearization point fixed! preserves the PB resultP
.0 in the linear approach~at least for symmetric electro
lytes!, but then the grand potential can no longer be obtai
by a volume integration of this pressure.
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APPENDIX: SOLUTION OF THE LINEAR PB EQUATION
FOR A CELL MODEL IN d DIMENSIONS

Consider a cell model ind dimensions with a generalize
radial coordinater. d51, 2, and 3 corresponds to plana
cylindrical, and spherical macroions, respectively. After t
transformationx5k̄r and c(r )5c̃(k̄r )5c̃(x) the linear-
ized PB equation~15! reads

c̃9~x!1
d21

x
c̃8~x!5c̃~x!2c i , ~A1!

where the prime indicates differentiation with respect tox.
Henceforth we will not bother with the difference betweenc̃
and c and omit the tilde. An obvious particular solution o
Eq. ~A1! is c(x)5c i , while the homogeneous equation
solved by the ansatzc(x)5w(x)/xn with n5d/221, pro-
vided w(x) solves the Bessel equationx2w9(x)1xw8(x)
2(x21n2)w(x)50. Two linearly independent solutions a
n

i-

-

01140
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the modified Bessel functionsKn and I n @48#. The general
solution of the differential equation~A1! can, therefore, be
written as

c~x!5c i1CK

Kn~x!

xn
1CI

I n~x!

xn
, ~A2!

whereCK andCI are constants to be determined by the f
lowing boundary conditions. Gauss’s law relates the rad
derivative of the electrostatic potential atr 05x0 /k̄ to the
surface charge densityes of the macroion. If we define the
latter to be the total charge of the macroion divided by
surface area, we havec8(x0)524p,Bs/k̄. Since the whole
cell is neutral, we also havec8(X)50 at the outer cell radius
R5X/k̄. The integration constants now follow from inser
ing these boundary conditions into the general solution. A
a little algebra we then find the potential

c~x!5c i1
4p,Bs

k̄D
S x0

x D n

@ I n11~X!Kn~x!1Kn11~X!I n~x!#,

~A3!

where the determinantD is defined as

D5Kn11~x0!I n11~X!2Kn11~X!I n11~x0!. ~A4!

We haveD.0 sinceX.x0.
At the outer boundary the potential~A3! can be further

simplified. The term in angular brackets reduces to 1/X, and
using the volume fractionf, the surface charge density ca
be rewritten in terms of the colloid charge ass/r 05(Q/V)
3(12f)/df. Inserting the definition~16! for k̄ we arrive at

c~R!5c i1
Q/V

(
i

v i
2n̄i

12f

dDAf
. ~A5!

Equation~A5! gives the boundary potential in the linearize
PB theory for a generald-dimensional cell model with arbi-
trary linearization pointc̄ and electrolyte composition.
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@37# R. Podgornik and B. Zˇekš, J. Chem. Soc., Faraday Trans. 284,
611 ~1988!.

@38# R. D. Coalson and A. Duncan, J. Chem. Phys.97, 5653~1992!.
@39# R. R. Netz and H. Orland, Eur. Phys. J. E1, 203 ~2000!.
@40# I. Borukhov, D. Andelman, and H. Orland, Electrochim. Ac

46, 221 ~2000!.
@41# H. Wennerstro¨m, B. Jönsson, and P. Linse, J. Chem. Phys.76,

4665 ~1982!.
@42# Note that for anygivenvalue ofc̄ the grand potential from the

linearized PB theory is of course bounded below.
@43# However, the optimal linearization pointc̄opt is not equal to

the Donnan potentialc(R), because the boundary potential
different from the average potential^c(r)&.

@44# If f (x) is convex, its graph lies above any of its tangen
Constructing the tangent in„^x&; f (^x&)… shows that f (x)
01140
E

ns.

o-

.

>f(^x&)1(x2^x&)f8(^x&). Averaging yields Jensen’s inequalit
^ f (x)&> f (^x&). If f is concave, the inequality sign reverses

@45# J. S. Winn,Physical Chemistry~Harper Collins, New York,
1995!.
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